Programming Language Support for
Collaborative Virtua Environments

Clinton Jeffery, Omar El-khatib, Ziad Al-sharif
Department of Computer Science, New Mexico State University
{j effery, okhati b, zsharif }@s. nnsu. edu

Naomi Martinez
Department of Mathematics, University of Michigan
naom amaumnm ch. edu

Abstract

Collaborative virtual environments (CVES) are
a very popular form of entertainment. The high
cost of developing CVEs has limited their use
in small scale or experimental domains. The 3D
graphics, network communications, and audio
features of CVESs pose significant challenges for
developers. This paper describes very high-level
language support for 3D graphics that facilitate
rapid development of experimental CVEs.

Keywords: collaborative virtual environments,
3D graphics, programming languages

1 Introduction

Games such as EverQuest use computers with
3D graphics cards and internet connections to
create virtual environments in which users ma-
nipulate complex virtual objects. Collaborative
virtual environment (CVE) technology has enor-
mous potential, but the cost of development lim-
its the rate of experimentation and restricts the
pool of developers to larger organizations. \Very
high-level language support for graphics, audio,
and networking abstractions can reduce the cost
of developing CVEs and make them econom-
ical for new application domains. APIs such
as OpenGL [7] enable construction of portable
3D applications, but these APIs are very large

and complex. Sun’s Java3D web site claims that
API enables ordinary programmers to write 3D
graphics, but the size and complexity of the API
(150+ classes) belies that assertion.

This paper describes general purpose pro-
gramming language features that support the
rapid development of CVEs. The features are
implemented in a very high-level applications
language called Unicon [5], a successor to Icon
[4]. Language extension was used to explore the
combination of CVE features in optimizing con-
trol structures and system support, and to allow
the notation for CVE objects to be concise, com-
parable to arrays or strings.

This paper focuses on language features. Uni-
con CVEs also use class libraries that model the
virtual environment in an extensible, very high-
level language; a CVE client/server architecture;
tools for building virtual worlds; and a reference
implementation CVE; see Section 3.

Features that provide access to general-
purpose capabilities that are ubiquitous on mod-
ern hardware and software platforms deserve
language level support in the form of types, con-
trol structures, operators; as well as integration
and optimization within virtual machines and
runtime systems. The language features added
to Unicon to support CVEs are 3D graphics, net-
working, and audio. They can be used varyingly
in many different domains and CVEs. This pa-
per focuses on the 3D graphics aspects.



2 Graphics Support for CVEs

Unicon’s 3D interface extends a set of very high-
level 2D graphics facilities [3]. Built using
OpenGL, Unicon’s 3D interface runs on mul-
tiple platforms and provides a level of abstrac-
tion suitable for programmers with little graph-
ics expertise. Because the design is not a “wrap-
per” for the OpenGL library, it is not limited by
OpenGL’s C-based paradigms, but is free to in-
tegrate 3D as needed throughout the virtual ma-
chine and runtime system of the language.

2.1 Design Rationale

Unicon 3D supports graphics primitives, trans-
formations, lighting, and textures, emphasizing
ease of learning and use at a higher level than
OpenGL. The use of image files as textures is
simplified, the manipulation of colors, material
properties and textures is integrated, and a con-
trol structure called transform environment sim-
plifies matrix stack maintenance.

OpenGL contains 250+ 3D graphics func-
tions; programs also perform many window sys-
tem calls to open/close windows and handle user
input. Unicon 3D reduces OpenGL’s APl down
to 19 new functions and 6 extensions to preex-
isting 2D graphics functions. The simplification
comes from a flexible type system, support for
variable numbers of parameters and default pa-
rameter values, bundling many OpenGL calls
into atomic operations, and omitting seldom-
used or unnecessary features. To draw a poly-
gon in OpenGL, the user calls gl Begi n(),
followed by calls to gl Vertex() for each
vertex; the actual polygon is rendered with a
call to gl End(). In Unicon 3D, a call to
Dr awPol ygon() performs this task.

2.2 Primitives and Attributes

Scenes are drawn as sets of primitives in an
(x,y,z) coordinate system. The objects visible
on-screen depend on the eye position and di-
rection. The Unicon 3D primitives are cubes,
points, lines, spheres, torii, cylinders, disks, and
various polygons. Polygon vertices are sup-
plied in various “mesh modes” (simple, trian-
gle fan, quad strip, etc.). Modest semantic im-
provements are made compared with OpenGL;

for example drawing of concave polygons is not
part of OpenGL. Drawing functions use a de-
fault window which can be overridden by an an
optional first parameter.

Unicon uses attributes, read or set via the
function WAttrib(), to control drawing details
without introducing a large number of functions
or struct/class fields. Attributes are encoded
as strings to simplify the interface; they con-
trol colors, textures, line styles, fonts, and cam-
era features such as eye position. A change
to one of these attributes looks like WAL-
trib(w,”’eyepos=0,0,7.2”). When an eye attribute
changes, the scene is redrawn.

2.3 Transform Environments

Matrix multiplications compute rotations, trans-
lations, and scaling on objects. Compound ob-
jects are rendered by applying transformations
hierarchically. OpenGL addresses matrix stacks
well and yet Unicon 3D allows substantial sim-
plification over OpenGL. PushMatrix() and Pop-
Matrix() pairs are extremely common, and pro-
grammers often fail to match them, motivating
a new control structure in Unicon 3D called a
transform environment. The syntax
wi ndow : expr

evaluates expr, wrapped in a PushMa-
trix()/PopMatrix() pair. Transform envi-
ronments may nest. If a window is supplied, it
becomes the default window for the evaluation
of expr. This is analogous to the string scanning
control structure that originated in the Icon
language. The expr in a transform environment
is usually a compound expression. The PopMa-
trix() will be performed even if the code fails or
returns from within expr, avoiding a common
source of bugs in 3D programs. Transform
environments also improve code readability.

2.4 Colors, Lightsand Materials

Lighting helps a scene appear to be 3D, but
adding lighting can be complicated. There are
three types of light: ambient, diffuse, and spec-
ular, corresponding to non-directional, direc-
tional, and reflective properties. Unicon 3D at-
tributes light0..light7 control up to eight lights.
Each light is on or off and has diffuse, ambient,
specular, and position components.



Each object in a scene may have material
properties that describe its color and appear-
ance under various lighting. The material prop-
erties are ambient, diffuse, specular, emission,
and shininess. Obijects can emit light of a spe-
cific color. Using combinations of these material
properties one can give an object the illusion of
being made of plastic or metal. Material proper-
ties extend the foreground color attribute used
in drawing. In addition to numeric RGB for-
mats, Unicon uses Icon’s rich color naming sys-
tem [3]. Natural color names such as ”deep pur-
plish blue” are an alternative to RGB color spec-
ifications, and Unicon 3D provides similarly in-
tuitive means of specifying materials in CVEs.
Material properties are specified in strings con-
taining up to four semi-colon separated property
components in the following format, plus an op-
tional numeric shininess component.

. opaque
ambient paq
. dull
diffuse
translucent colorname
specular
.. subtransparent
emission
transparent

In order to get red objects a programmer can
call Fg(’red”); a more full-blown material prop-
erties specification can also be expressed conve-
niently, as in the following example.

Fg(”diffuse gray; emission light vivid green™)

2.5 Textures

Textures are important in applications such as
CVEs, giving a scene its “feel”, ranging from
cartoon to photorealistic. Textures are 2D im-
ages that replace or blend with material proper-
ties of 3D objects. Textured objects’ appearance
depends on the texture image and texture coor-
dinates that map parts of the texture image to
parts of the object. Unicon 3D texture images
can be another Unicon window, an image file-
name in a format such as JPG or GIF, or a string
encoding of the image in a literal format such as
“width,palette,data”. A rich set of generic tex-
tures can be specified by a texture name consist-
ing of the form
material property texture

where material property is as described above,
and texture is one of the following 22 textures:
stone, brick, sand, glass, cloth, wood, dirt, mar-
ble, concrete, tile, leaf, grass, carpet, skin, hair,

metal, water, clouds, grill, iron, plastic, leather.
CVE objects can be drawn using generic tex-
tures such as " wood" or more interesting tex-
ture names such as "dark green brick".
This aids prototypes, prior to obtaining and re-
fining more precise texture images.

Using another Unicon window as a texture al-
lows the program to create a texture image dy-
namically. This enables virtual whiteboards and
computer screens containing textures that show
the dynamic content of other textual or 2D or
3D graphic applications. Textures must have a
height of 2™ and width of 2™ pixels where n and
m are integers. If not, Unicon 3D scales the tex-
ture down to the closest power of 2. Rescaling
slows the application and may cause visual arti-
facts, so it is wise to make textures with appro-
priate sizes in the first place.

2.6 Animation

Animation is performance sensitive; Unicon is
slower than systems programming languages,
but nevertheless supports the 3D animations
needed by CVEs. Unicon’s VM falls some-
where between Java and scripting languages in
performance, but VM speed is not a problem
when performance is limited mainly by OpenGL
rendering speed. The language runtime system
serves as the “game engine” and runs at the
speed of its C code, and the CVE semantics is
running at the speed of the VM.

Animations redraw the entire scene each time
any object moves or the user changes point
of view. Rather than calling EraseArea() fol-
lowed by the appropriate graphics primitives,
Unicon programs usually allow the runtime sys-
tem do the redrawing. Unicon maintains an
application level display list of graphics oper-
ations to execute whenever the screen must be
redrawn; the list contains everything since the
last EraseArea(). The elements of the list are
Unicon records and lists containing the string
names and parameters of graphics primitives.
For example, a call to DrawSphere(w,x,y,z,r)
returns (and adds to the display list) a record
gl_sphere(“DrawSphere”, X, v, z, ).

Instead of redrawing the scene to move an ob-
ject, Unicon programs modify the object’s dis-
play list record(s) and call Refresh(). The fol-
lowing code fragment illustrates animation by



sliding a ball up and down. In order to “bounce”
the program would need to incorporate physics.

sphere : = DrawSphere(w, x,y, z,r)

increment := 0.2
every i := 1 to 100 do
every j := 1 to 100 do {
sphere.y +:= increnent
Ref resh(w)

}

It is easy to modify objects’ attributes be-
tween frames with high frame rates. Perfor-
mance results are encouraging; in practice Re-
fresh() is seldom called since changing the cam-
era position via Eye() performs an implicit re-
fresh. The display list (modified implicitly via
variable spher e above) is also used to insert
or remove complex objects in a scene, without
rerendering them; it is easy to manipulate be-
cause it is an ordinary Unicon list. CVEs main-
tain subsets of the display list corresponding to
rooms, tables, etc. The transform environment
control structure produces the sublist of display
list objects rendered during its evaluation.

In implementing animations with Unicon 3D,
we observed that on the same hardware, with
vendor drivers, OpenGL scaled to large num-
bers of objects much better under one operating
system than under another. Also, most 3D ap-
plications’ use of graphics primitives is highly
repetitive. A typical CVE display list of 1000
elements is reduced by 50% with the addition of
a peephole optimizer to the display list.

2.7 3D Example

This example illustrates many 3D graphics fea-
tures described above. Because this is program
source code and not a data file, programmability
and flexibility are retained for CVEs.

Textures can be captured using a digital cam-
era; direct use of image files makes adding tex-
tures easy. Editing is usually needed to adjust
the image resolution or improve its quality.

procedure main()
&window := open(‘‘casa', "gl",
"bg=black","size=700,700")
Texture(''carpet.jpg™) # floor
FillpPolygon(-7,-0.9,-14,-7,-7,
-14,7,-7,-14,7,-0.9,

Figure 1: A texture-mapped scene of a room.

-14,3.5, 0.8,-14)
Texture("walll_jpg", # r. wall
0,1,0,0,1,0,1,1)
FillPolygon(2,4,-8, 8.3,8,-16,
8.3,-1.2,-16,2,0.4,-8)
Texture("wall2_jpg'™) # 1. wall
FillPolygon(2,4,-8,-9,8,-16,-9,
-1.2,-16,2,0.4,-8)
Texture('poster.jpg") # picture
FillPolygon(1,1.2,-3,1,0.7,
-3,1.2,0.5,-2.6,1.2,1,-2.6)
Texture('unicorn.jpg", # pic. 2
1,0,0,0,0,1,1,1)
FillPolygon(0.8,2,-9,-3,
1.6,-9,-3,3.9,-9,0.8,4,-9)

# Draw lamp in transform environ
:{ Translate(0.7,0.20,-0.5)
Fg('emission pale yellow™)
# nested environments
:{ Rotate(-5,1,0,0,5,0,0,1)
DrawCylinder(-0.05, .57,-2,
.15, .05, .17)}
Fg('diffuse grey')
:{ Rotate(-5,1,0,0,6,0,0,1)
DrawCylinder(0,0,-2.5,.7,
.035,.035)}
:{ Rotate(6, 0, 0, 1)
DrawTorus(-.02,-.22,-2.5,
.03,.05)}

}

Texture("'t2.jpg","auto') # table
:{ Rotate(-10, 1, 0, 0)
DrawCylinder(0, .2,-2,
-1,.3,-.3) }
:{ Translate(0,-.09,-1.8)
Rotate(65, 1, 0, 0)
DrawDisk(0,0,0,0,.29)}



Fg(C'diffuse weak brown'™)
:{ Rotate(-20, 1, 0,0)
DrawCylinder(0,.2,-2.2,
23,.1,. D)}
while Event() == "'q"
end

3 An Example CVE

Unicon has been used to implement a simple
CVE called NSH (New Science Hall) that sup-
ports distance education courses, and also en-
ables virtual meetings and labs with local stu-
dents. The core CVE client was written in about
5K lines of code, demonstrating the potential
of these language facilities for CVE construc-
tion. Subsequent development of a collaborative
IDE and other features added more lines of code
than did the core CVE facilities. NSH avatars
are simple, customizable communication tools
(Figure 2). Avatars can point, have an identify-
ing label, and visibly indicate when chatting is
performed. Users provide a GIF or JPG image
to present their face inside a rectangle or tex-
turemapped within an egg-shaped head.

Figure 2: Avatars

NSH’s graphical environment is cartoon-like,
rather than photorealistic as for CVEs such as
Le Deuxieme Monde. Students will not have eye
contact, but may have less fear of embarrass-
ment while asking questions. Figure 3 shows an
example scene from this environment.

NMSU’s electronic classroom features cus-
tom local software that feeds the virtual white-
board content up in Adobe SVG (an XML)
format via HTTP, where it is available to the

Conper Sclence

Figure 3: Virtual Academia with Integrated
Whiteboards, Chat and Voice

CVE along with other SVG plugin-equipped
browsers. A collaborative development environ-
ment prototype was also developed, shown in
Figure 5. Users edit text, watch each other, and
chat. Collaborative views of other areas of soft-
ware development are under construction. In-
structors can walk around a virtual lab, talk with
students, and look at their virtual screens, zoom
in to the collaborative environment when ques-
tions require on-screen details.

(&) Pegasis adiling: Momefugrad7iclay tonipegastishame_digicn
File Edt Options Comple Run Project Network Help Al v

(Untitled) | treeiicn | connect_digicn | name_digicn
Blass name_dlg: _Dialog(name_text_button, name_text_field, name_label) -~
method handle_name_text_button(ev)
if ev.event === (&lpress |'Vm") then
set_name(name_text_field.get_contents())
dispose()

end

method handle_name_text field(eid)
ifew.event === ("¢m"J then {
set_name{name_text_field.get_contents(})
dispose()j

end
method handle_default(ev)
method Fialog_event(ev)
case ev.get_component() of {
name_text_button : handle_name_text_bution(ew)
name_text_feld : handle_name_text.field(ev)

default: handle_default(ev)

« »

Diagnostics | chat Users

nclayton: What's next for Pegasuis?
Michael:How about audio?
Erick Itwould be nice Ifwe could editimages in Pegasus
nclayton: Yeah that would be nice.

Edward] think you should integrate [VIB with Pegasus

1 Send | Clear

Figure 4: A collaborative IDE

4 Related Work

Openlnventor [9] is a C++ API built atop
OpenGL at a high semantic level; unfortunately
it is large and complex, and is not as ubiqui-



tous as OpenGL. InvenTcl [1] and iVRS [6] are
Tcl bindings for Openlnventor and VRS that al-
low prototyping 3D applications. InvenTcl and
iIVRS wrap a C++ 3D toolkit for another lan-
guage, instead of aiming for higher level fea-
tures or API simplification.

VRML and X3D are scene description lan-
guages based on Openlnventor’s object model
that are more widely supported than Openin-
ventor. They run inside a web browser, offer-
ing limited capabilities for dynamic content, but
despite this have been extended in production
CVEs such as Cybertown (cybertown.com) and
systems developed at the U.S. Navy’s MOVES
Institute www.movesinstitute.org

Java’s 3D APl is a little easier than OpenGL,
but learning to write Java 3D programs is dif-
ficult [8]; Java 3D introduces a hiararchy of
around 150 classes. VPython (vpython.org) pro-
vides 3D support that is not a “wrapper” layer on
top of a lower-level API; it bundles an IDE for
3D program development, along with a fast vec-
tor library, but is not aimed at CVEs since it is
not integrated with networking or audio.

The DIVE framework allows rapid CVE de-
velopment [2]. Rather than extending a VM
and runtime system with CVE-oriented features
as in this paper, DIVE’s CVE engine is ex-
tended using the Tcl scripting language. This
is a closer-to-mainstream approach to rapid de-
velopment of custom CVEs, but Tcl is famously
slow, discouraging the use of extensive dynamic
behaviors by large numbers of objects.

5 Conclusions and Future Work

Unicon requires programmers to learn only ba-
sic CVE concepts and a few 3D functions to
write CVE client code. This is important when
technical staff consists a small number of aver-
age programmers devoting fractional time to a
project, instead of the army of professional de-
velopers that might build a CVE for industry.
Unicon is often used for rapid prototyping, but
the facilities scale well to production applica-
tions except where CPU performance is critical.

The facilities described in this paper reduce
the amount of code to implement simple CVEs,
while retaining the flexibility of a very high-
level language. The features developed will also

be useful in experimental visualization or group-
ware applications. Future work at the language
level will include additional performance tun-
ing, support for new 3D platforms, and develop-
ment of protocol and control structure support
for network fluctuations and faults.

6 Acknowledgments

The NSH CVE is being developed by W. Win-
kler, N. Clayton, A. Dabholkar, K. Tachtevreni-
dis, Y. Kim, and R. Ramagiri and others. This
work was sponsored in part by the Alliance for
Minority Participation, and by NSF grants EIA-
0220590, EIA-9810732 and DUE-0402572.

References

[1] S. Fels and K. Mase. InvenTcl: a fast
prototyping environment for 3d graphics
and multimedia applications. In Advanced
Multimedia Content Processing, pages 161-
176, 1998.

[2] E. Frecon. DIVE: A Programming Archi-
tecture for the Prototyping of 11S. In Inhab-
ited Information Spaces. Springer, 2004.

[3] R. Griswold, C. Jeffery, and G. Townsend.
Graphics Programming in Icon. Peer to
Peer Communications, San Jose CA, 1998.

[4] R. E. Griswold and M. T. Griswold. The
Icon Programming Language. Peer to Peer
Communications, San Jose, 1996.

[5] C. Jeffery, S. Mohamed, R. Pereda, and
R. Parlett. Programming with Unicon. Uni-
con Project, unicon.org, 2005.

[6] O. Kersting and J. Dollner. Interactive 3d
graphics for Tcl. In 2002 FREENIX, pages
1-12. USENIX, June 2002.

[7] J. Neider, T. Davis, and M. Woo. OpenGL
Programming Guide.  Addison-Wesley,
Reading, Mass., 1993.

[8] D. F. Savarese. Learning to Fly. JAVAPro,
June 2003.

[9] J. Wernecke. The Inventor Mentor.
Addison-Wesley, Reading, Mass, 1994.



