
Creating
Collaborative Virtual Environments

Using Unicon

Wynn H. Winkler

New Mexico State University
Department of Computer Science

December, 2004

Project Report for the Degree of
Master of Science in Computer Science

Abstract
The NMSU CS department has begun a project to build an open source, interactive,
multi-user, networked 3D environment which is suitable for distance learning and group
collaboration. This project is described in detail at www.cs.nmsu.edu/~jeffery/vcsc/. The
platform for this project is the Unicon language and associated libraries.
Several persons have contributed code to various phases of this project – these include
some basic 3D architectural graphics, event handling, client-server networking, a 2D chat
window and commands, a texture library, and animated avatars. Each of these has been
done as separate experimental prototypes that demonstrate how to get certain features to
work. The task of getting these pieces integrated and re-organized into one coherent
whole constituted a project in itself. This paper describes this overall integration phase of
the project and the resulting prototype Collaborative Virtual Environment (CVE).

Table of Contents
 1 Introduction.. 2
 2 Requirements.. 6
 3 Related Work... 7

 3.1 VRML software... 7
 3.2 Open-Source 3D Game Engines... 7
 3.3 Other CVE Engines.. 8
 3.4 Other Potential Languages.. 10

 4 Design... 11
 4.1 Introduction.. 11
 4.2 Class Structure... 14
 4.3 Event Loops... 18
 4.4 OpenGL Display List.. 18
 4.5 Network Commands... 19

 5 Implementation.. 20
 5.1 User Interface... 20
 5.2 Directory Structure... 23
 5.3 File Structure.. 23

 6 Evaluation.. 24
 7 Conclusions... 25
 8 Future work.. 25

 8.1 Major functional additions.. 25
 8.2 Programming and Design Changes... 26
 8.3 Testing... 27

 9 Appendix A - VRML and Level Editors.. 29
 9.1 The VRML Language... 30
 9.2 Survey of Existing 3D Editors... 32

 10 Bibliography... 38
 11 Notes and web sites.. 39

 1 Introduction
3D graphical environments as seen in today's computer games and virtual world

simulations provide the user looking into the terminal with the amazing experience of
moving around in and interacting with a simulated world. This has stimulated a great deal
of interest in using such technologies for purposes other than simulated mayhem – such
as learning, teaching, and collaboration.

This is the overall motivation for the Unicron project described at
www.cs.nmsu.edu/~jeffery/vcsc/ . The goal of this project is to produce an online virtual
world with a 3D graphical interface running on the user's local machine - an interactive,
networked 3D extension of a university computer science department. The two most
immediate uses will be distance learning within the New Mexico state college network
and group collaboration.

For a project such as this there are a large set of issues involved. There is quite a large
search space of platforms which might be usable, and searching is expensive in this case
due to the need to actually work with and learn how to use the candidate platforms. In the
first semester of this project, substantial investigation was done in the areas of Virtual
Reality Modeling Language (VRML) software, and open-source 3D game software to see
if any viable environments could be found.

VRML can render 3D graphics and provide some interactive behavior via javascript.
In the early days of the web, VRML plugins in web browsers were expected to be a major
line of development, and a great deal of work was done with this language.
Unfortunately, it ran into major problems with browser standardization, performance
limitations, and platform portability.

VRML did not turn out to be a major factor in web software, but it is used in many
contexts. Its open standards make it a popular file transfer format for 3D editors, and
many examples, tutorials, and some software are still available for it. A major motivation
for VRML was to create an open standard for 3D graphics files. The desire for open 3D
graphics standards is still very powerful, and the next generation of this effort centers
around the X3D language. The VRML archives are hosted at
http://www.web3d.org/x3d/vrml/index.html. See the section of this paper entitled Related
Work for an extended discussion of the search results. More details on this search are
included as an appendix to this paper.

The major conclusions of this search are:
1 There are very few 3D editors which produce VRML code that

would be suitable for our purposes.
2 Given a file of VRML code, it is either necessary to run it within a

proprietary and closed-source browser, or find a way to display and
manipulate it within an open-source coding environment. This latter
is a major project itself.

3 The open-source and near-open-source game engines are a possible
platform for this work. Their major drawbacks are that they are
written in C/C++ and require a large committment of low-level
coding time and effort. Also, most of the graphics and avatars are
still proprietary and/or inappropriate for our application. Thus it is

2

generally necessary to re-do all the graphics work, particularly the
avatars and textures in their own proprietary formats, which is a
major effort.

4 Other open source approaches include the Alice project
(www.alice.org) based on Python and later ported to Java via
Java3D. Also worth noting is the Croquet project
(www.opencroquet.org). This is based on the Squeak/Smalltalk
languages. The latter looks interesting but is still not quite released.
The current incarnation of the Alice project is not quite what we
want, either.

Ultimately, although there are a lot of related projects, we did not feel confident that
any of them were stable, portable, and easily extensible enough for us to meet our goals
using their platforms.

This led to the challenge of putting together a complete CVE using pieces of
demonstration code which have been previously developed within the Unicron project
here at NMSU and this is the path which has been taken.

Unicron is written in the Unicon language. This is one of the less well-known
languages in circulation, and thus some comments on the this language are worth
including at this point. The roots of Unicon begin with the SNOBOL language which was
moderately well-known in the 1960's and 1970's. SNOBOL was well regarded for its
string and pattern matching capabilities and for general text processing work. Proponents
of SNOBOL have gradually migrated to its successor, Icon, during the 1980's and 1990's.
The home of the Icon language is at http://www.cs.arizona.edu/icon/. The Unicon
language is an extended dialect of the Icon language developed by a separate group at
http://unicon.sourceforge.net/. Roughly, its goal is to modify/add to Icon the features that
are expected for modern languages.

These features include:

1 Open standards, and Open-Source Licensing
2 Multiple platform support – Windows/Unix/Linux
3 Support for an Object-Oriented code structure
4 2D Graphics (note that these have also been added to Icon)
5 GUI interface
6 3D Graphics – with OpenGL being the library of choice
7 Networking via standard internet protocols
8 A respectable IDE environment including an interactive debugger,

an editor or an interface to one, and object browsing capabilities.

Over the recent few years, serious implementations of 1-7 of the above have been
developed and incorporated in the main languge distribution. The IDE and debugger are
probably best considered a work-in-progress.

While these capabilities have been developed and included directly in the language, or
as libraries, there has not been a lot of application development done which exercises
them extensively. This is particularly true of the 3D Graphics API, which was developed

3

at NMSU in 2002-2003. Thus, a parallel motivation for this project is to build an
application which exercises the 3D libraries and addresses the following issues

1 Unicon is a compiled language, but has many features characteristic
of scripting languages –dynamic variable typing, built-in data data
structures for strings, lists, hash tables, records, and automatic
memory management and garbage collection, are some
notable ones. It is often believed that scripting and/or interpreted
languages do not have adequate performance for interactive 3D
graphics applications –particularly games and simulated worlds.
Since it is compiled, it is possible that Unicon can deliver adequate
performance while creating a more programmer-friendly
environment than the classic C/C++ languages generally chosen for
this type of application. This issue needs to be addressed with
demonstration applications which provide adequate subjective
response times at the keyboard and mouse.

2 Similar questions arise for the networking libraries – can they
handle the bandwidth required to give respectable performance to a
3D simulated world.

3 It is to be noted that Unicon's 3D graphics and networking libraries
are not direct wrappers for the underlying system-level OpenGL and
sockets API's. Considerable effort has gone into providing a
simplified programming interface to the Unicon developer while still
including access to the most useful features of these API's. This can
create two problems. First, simplifying things for the programmer
often means that there is extra overhead buried within the
programming environment. Second, some of the lower level
capabilities of the API become inaccessible. Thus, there are
questions as to whether the gains in programmer time and effort are
consistent with adequate performance for the end-user, and even
whether certain application features can be implemented at all.

4 In addition to performance issues, the libraries are currently
documented at the function call level. For developers who want to
learn how to put those functions together into working applications
the major resource is studying the small demonstration applications
from the Unicron project. These are generally proof-of-concept
implementations which address only one aspect of a complete
application and often have inconsistent coding styles. Issues such as
the best way to structure event-loops, and how to manipulate the
Unicon interface to the 3D OpenGL display lists, and how to
integrate 2D and 3D graphics in the same application, are still topics
for considerable experimentation. Some extensions to the Unicon

4

graphics libraries will come out of this work as a side-benefit.

5 There is also an issue of software development methods. Is it a
useful exercise to jump in and start hacking together prototypes,
even partial ones, with a philosophy of "just make it work" and then
do more systematic design later vs. stand back, look at everything
and try to do a systematic design process before trying to do much of
the code. This project definitely emerges from the first approach
rather than the second. It should be noted that some of the early
prototypes were done because it was uncertain that these features
could even be implemented in Unicon - under those conditions, top-
down design is probably an unworkable approach. This issue is re-
visited in the Evaluation section.

From a programmer's standpoint, Unicon “feels” more like a scripting language, with
Python being perhaps the closest or most obvious comparison. In this project, the
string/text handling features derived from SNOBOL were little used. The major
similarities with Python are in the control structures, dynamic typing, automatic memory
management, class structures, and a fast compile/link process. The major differences are
that Unicon's compiler creates a stand-alone executable (the VM is actually embedded in
this executable file), Unicon has higher-level interface libraries to graphics and
networking, and the size of the user base.

The work in this project entailed taking all the pieces of demonstration code which
were done in the last year or two and pulling them together into one consistent coding
framework and adding a lot of features. A separate section of this report will discuss the
modifications which were needed here, but basically, several sections of the code have
been nearly completely re-written – this includes the 3D graphics, server, command/chat
window, and event loops. Avatar networking was added from scratch using the avatars
which were designed by another student.

5

 2 Requirements
The above considerations, plus an educational focus, suggest the following as a

reasonable set of initial requirements for the CVE prototype:

a. The initial implementation will create a 3D environment as much like the NMSU
CS department as possible.NMSU's Science Hall is in many respects a generic modern
office building with generic modern offices, classrooms, and computer labs . This may
seem dull when compared to the computer games today's students play. On the other
hand:

• It does get you ready for the real world.
• Distance learning students from other parts of the state will know what to

expect if they visit or transfer here.
• We are programmers, not graphic artists or industrial designers - working

in a software modeling environment allows us to avoid pitfalls and
challenges involved in the architecture of the space that is being
constructed..

 b. The file formats involved should be non-proprietary and based on open standards.
Small files are a big plus due to network transmission time and local disk storage
requirements. The file size/disk storage issues are of particular concern since distance
learning efforts will be initially targeted at other state schools and community colleges
where the computer hardware may be 1-2 generations behind our development equipment

c. Following open source philosophy, cross-platform support for Windows, and Linux
is a goal. Later, the project will survey the systems in use at other state colleges and it is
quite possible that cross-platform support will become not just a philosophy, but will be
required due to our in-state variability in computing environments.

In accord with these general requirements, the set of features which have been
implemented so far include:

1. 3D/OpenGl rendering of a few rooms of the Science Hall environment.
This includes tiled textures, moveable doors, interconnecting rooms and
corridors, and basic classroom features such as windows and whiteboards.

2. Each user has a separate avatar which is controllable from their
workstation.

3. Support for multiple networked users, with each of their avatars being
visible to other users while being controlled from their own terminal.
Avatar movements are automatically mirrored on remote terminals.

4. A 2D chat/command window is available for chat with other users. and
simple commands have a standard parse and execute sequence.

5. A server which supports a client/server architecture and implements the
message passing and processing required for the above.

6

6. An event handling paradigm which integrates all the events and messages
for the above.

7. All of the above in one clean and consistent body of open-source code.

 3 Related Work
Both 3D games and graphics and CVE's are a very active area of software

development and there are numerous related and semi-related projects which may be of
use in constructing a CVE. These include:

 3.1 VRML software
This is interesting for two reasons. First, lots of develoment effort went into this area

in the late 1990's and should have produced some useful results. Second, it is the only
mature open-source 3D file format standard. Quite a few 3D editors will export some
form of VRML code, and there are viewers available free. This is the reason so much
effort was spent in finding, testing, and evaluating the available VRML software. An
appendix goes into detail on this work.

In terms of our requirements, VRML has four problems:
a. It is decent for the architecture but very difficult to do moving avatars
b. There are very few 3D editors that produce well structured, readable, and efficient

VRML code – we were only able to find one – the Pharus editor from www.int3d.com.
c. There are very few browsers which can be used to display VRML, and most are

closed-source and/or proprietary, and run as plug-ins for a web-browser. This means that
if you want to add features, they cannot be added at the viewer level, instead you must
find some way to code them in the VRML itself, generally in Javascript, and there are
significant limits to what can be done here.

d.Converting VRML code to render in some other 3D engine is a major project in
itself

For these reasons, VRML is not currently being pursued for this project. See Appendix
A for more details.

 3.2 Open-Source 3D Game Engines
This is also a major problem with 3-d game editors.
Quark (quarkplusplus.sourceforge.net)is a large open source project to produce a 3D

game or level editor. There are 2 or 3 others also available. These output the proprietary
formats required by the games to which they are targeted. The commercial game
companies have never objected to this, so the formats are probably de facto open, but they
are still on slightly questionable legal ground from the open-source standpoint.

ID Software has released Quake II/III as open source software. This includes only the
engine code written in C, not the textures, level maps, animations, monsters, sound, etc.
There is not much documentation available.

The Crystal Space project is at http://crystal.sourceforge.net is written in C++/OpenGL

7

and is an active community project. It has most of the features expected for a modern 3D
game. The project is actually targeted to building a toolkit from which to build 3d games
and applications. This means there is no one standard engine - there are several
demonstration applications, but you may have to build your own or do substantial
modifications to one of the demos to get what you expect.

The Planeshift (www.planeshift.it) is an opensource project with the goal of building
an EverQuest-like online virtual world. They use Crystal Space as their 3D toolkit. The
project has very impressive graphic art work, and does work over the internet, even on a
dial-up connection, but it is has not yet implemented very many activities beyond a chat
room.

The Torque engine (www.garagegames.com) is commercial, but cheap and has
possibly acceptable licensing terms. It has a very impressive demo, and has the features
required for a 3D networked, multi-user CVE.

The main advantages of these environments is that they can provide a complete
working display with user interaction and networking already in place. Some of the file
formats have become "open" in a practical sense, and there are good open source level-
editors available for them.

The main problems with all of the above are the spotty documentation, and the need to
work with C/C++, which requires large amounts of programming time and effort, the
need to rewrite chunks of the engine to eliminate monsters and mayhem, and the need to
develop your own graphics from scratch. In summary, there are some interesting
possibilities here, but they require more resources than we have available.

 3.3 Other CVE Engines
We have done only cursory experimentation with these, or read academic papers on

them. The will be described mostly by quoting from their websites in order to give a
sense of what may be available. The main problems with them are that no source code is
available, or they are just starting to release their first version, or as with the Alice
project, they aren't quite doing a CVE in this version of their work.

a In the academic field there have been numerous papers written, and a few
sites have published working CVE's. The Swedish Institute of Computer
Science is well-known for the Distributed Interactive Virtual Environment
(DIVE) project (dive.sics.se). They release binaries but apparantly not
source code. The following description is taken from their web site:
Begin quotation:
Users navigate in 3D space and see, meet and collaborate with other users
and applications in the environment. A participant in a Dive world is called
an actor, and is either a human user or an automated application process. An
actor is represented by a "body-icon" (or avatar),to facilitate the recognition
and awareness of ongoing activities. The body-icon may be used as a
template on which the actor's input devices are graphically modeled in 3D
space.
The dynamic behaviour of objects may be described by interpretative scripts

8

in Dive/Tcl that can be evaluated on any node where the object is replicated.
A script is typically triggered by events in the system, such as user
interaction signals, timers, collisions, etc. In a typical Dive world, a number
of actors leave and enter worlds dynamically.
End Quotation.

b Another project which has attracted interest in the academic community is
the MASSIVE (Model Architecture and System for Spatial Interaction in
Virtual Environments). Some notes from its website:

Begin Quotation:
http://www.crg.cs.nott.ac.uk/research/systems/MASSIVE/
http://www.crg.cs.nott.ac.uk/research/systems/MASSIVE-2/

MASSIVE (version 1) is always and only a teleconferencing system and an
example implementation of the spatial model of interaction - its not a
general-purpose VR application development environment. It is a multi-user
distributed V.R. system which runs on Sun and SGI platforms. MASSIVE is
not generally available except to our project partners as noted above.
The current version of the CRG Virtual Environment (CVE) is also referred
to as MASSIVE-2 . CVE is a distributed multi-user virtual reality system,
current features of which include: networking; an extended spatial model of
interaction, including third parties, regions and abstractions; and multiple
users communicating via a combination of 3D graphics, real-time packet
audio and text. We expect to make a developers version available (initially
for SGIs only) around the middle of February 1997. A port to Windows NT
4 is expected around April 1997.
End Quotation

c The Alice project (www.alice.org) based on Java/Java3D and
Python/Jython. This system introduces students to programming via
scripting the actions of 3D characters and environments. From their web
site:
Begin Quotation:
Alice v2.0b is the next major version of the Alice 3D Authoring system,
from the Stage3 Research GroupCarnegie Mellon University. It has been
completely rewritten from scratch over the last two years.The focus of the
Alice project is now to provide the best possible first exposure to
programming for students ranging from middle schoolers to college
students.
End Quotation:

d The Croquet project (www.opencroquet.org) based on squeak/smalltalk is
just starting to release its software.
Begin Quotation

9

CROQUET IS....
a combination of open source computer software and network architecture
that supports deep collaboration and resource sharing among large numbers
of users. Such collaboration is carried out within the context of a large-scale
distributed information system. The software and architecture define a
framework for delivering a scalable, persistent, and extensible interface to
network delivered resources. The integrated 2D and 3D Croquet interface
allows for co-creativity, knowledge sharing, and deep social presence
among large numbers of people. Within Croquet's 3D wide-area
environments, participants enjoy synchronous telepresence with one
another. Moreover, users enjoy secure, shared access to Internet and other
network-deliverable information resources, as well as the ability to design
complex spaces individually or while working with others. Every
visualization and simulation within Croquet is a collaborative object, as
Croquet is fully modifiable at all times. Users and groups of users can
author and publish their individual resources within a persistent 3D
knowledge architecture. They may build any number of private or shared
"worlds" instantaneously, making them immediately accessible for others to
explore by providing spatial portals. These portals function much like
hyperlinks do within the World Wide Web. But unlike the Web, Croquet
enables the user to find and get to other individual worlds through the larger
context of Croquet's persistent common spaces. Croquet is also a complete
development and delivery platform. Its infinitely scalable architecture
provides it with enormous possibilities as an operating system for both
local and global informational resources.
End Quotation.

 3.4 Other Potential Languages
There are other languages available which may be capable of meeting the requirements

of this project while working at a higher programming level than C/C++. Possible
candidates would by Python with the available C graphics and networking libraries, and
squeak/smalltalk. These have not really been compared to the current approach due to the
resources which would be required.

10

 4 Design
 4.1 Introduction

Figures 1 is a screenshot of the CVE showing several avatars in a group photo in a
simple room which is designed for testing tiling of textures, movement of doors and
avatars, and connections to other rooms. The faces are gif files derived from actual
photographs, the avatars are constructed from basic geometric shapes, and can move their
limbs a bit as they walk. Since a given instance of the CVE client has only one avatar of
its own, group shots require several clients to be logged in simultaneously on the same
server.

11

Figure 1 Screenshot

The code is structured in a strictly object-oriented manner. UML diagrams for the
primary class relationships are presented in Figure 2. A more detailed discussion of the
inner workings of the classes is presented below.

Coordinates
The coordinate system for this model sets the origin at the NorthWest corner of the

NMSU Science Hall building. This is the location of Frank Harary's (Professor emeritus
and noted graph theorist) office so these are known as Frank Harary Normal (FHN)
coordinates. The positive x direction runs to the East, the positive z direction runs South
and the positive y direction is vertical upwards, all of them conceptually parallel to the
existing walls rather than exact compass points. The unit of distance is the meter and all
x,y,z coordinates are expressed in meters. The unit of angle is normally the degree, but
this value needs to be converted back and forth to radians when calling the trigonometric
functions (see Unicon rtod(), dtor(), sin(), cos()). This places all of Science Hall, and the
CS department, in the positive quadrant. This makes visualizing the rooms and their
relations in the code somewhat easier, but means that the code has not been tested well
with x,y,z values in the other quadrants.

3D Architecture
Start with 4 points that make a rectangle. Thats a wall, a floor, or a ceiling. 6 of these

rectangles make a box. A room is a box with some added features - exits, obstacles, and
decorations like whiteboards and windows. To make an exit - first make an opening by
subdividing a wall into smaller rectangles and then delete the one you want open. A door
can be put in the opening if desired. Keep the walls parallel to the axes to simplify the
math. The OpenGL API pretty much handles all the 3D transforms internally.

The data structure for the architecture could well be described as the simplest thing
that works, and does not use any of the more esoteric tree structures which are common in
modern game engine code. The fundamental element is an instance of the Wall class.
This is a set of 4 3D points which define a rectangle, and an associated texture which will
be tiled over the surface at rendering time. The 4 3D points are maintained as a list of 12
numeric values. Walls (and polygons) are rendered with both faces visible. Texture tiling
factors are determined by dividing the wall's length in each direction by values which
represent the real world length and width covered by the texture gif file. These texture
sizes are currently hard-coded as [0.2, 0.2] meters, but will become a data field in the
Texture object class which is currently being developed. Every wall must be parallel to
one of the major coordinate planes , xy, xz, or yz , thus since no diagonal walls are
allowed, all structures must be rectangular and aligned with the major axes. Floors and
ceilings are just wall polygons which are parallel to the xz plane. These conditions work
adequately with the Science Hall building, but their lack of generality is notable, and they
may be changed in the future.

For the rendering and tiling of walls to work correctly, their defining points must be
maintained in a standard order. Certain operations on walls - particularly creating
openings and doors sub-divide walls into smaller rectangles (which become wall objects
themselves). To preserve a standard order, the points are sorted by their distance from the
origin by method Wall.sort_coords(). This has worked adequately so far, but is not a
general solution to the problem.

12

The next conceptual structure is given by the class Box, which is basically a list of 6
wall objects which form a rectangular box with all right angles (the rectangular
parallelopiped from geometry). The Box is the parent class of Room and is normally
constructed by the Rooms constructor. The constructor for a box takes the x,y,z
coordinates of the *southwest* corner of the box, and a length, height, width, which run
in the positive x, positive y, and negative z directions respectively. From these it
computes the coordinates of the 6 walls which compose the box and stores them in a list.
This is the basic data for a Room. Note the use of the southwest corner as the base point
of the room - this is somewhat arbitrary and is not intuitive given that the overall
coordinate system is based on the northwest corner of the building.

The class Room is a sub-class of Box which adds lists of exits, decorations, and
obstacles. Exits are either doors or openings without doors. Decorations are windows and
whiteboards. Obstacles are objects such as tables, pillars, and file cabinets, where avatars
cannot move or be placed. They are not currently in use and have not been tested
recently.. Windows are not cutouts in the walls, they are special *.gif textures which
overlay the wall and typically show some outdoor scene. Whiteboards are currently fixed
textures which overlay a wall, but this will change in the next generation of the code
which will support dynamic whiteboards which will update in real time as users draw in a
separate 2D window.

The Room constructor creates a box. A major operation on the walls of the box is the
method add_opening() which is used to create openings and doors. This is done by
finding the wall which contains the coordinates for the opening, and then splitting that
wall into 3 smaller wall objects/rectangles - in particular, the main wall is removed from
the list of walls in the box, and replaced with sub-rectangles for the area above, the area
to the left, and the area to the right of the door or opening. This leaves no wall segment in
the opening itself, and the rendering process will produce an open view into the adjoining
room.

The class Opening should be understandable from the above - its constructor takes a
base point which must be located in an existing wall, and has default values for the width
and height of the door. Since an opening must connect 2 rooms, the class maintains a list
of the these 2 rooms in the field named 'rooms'. Note that when a door or opening is
created, each of the rooms it connect must execute the Room.add_opening(0) method so
that the opening is cutout of the walls in both rooms. See the code in SH118b.icn for
examples of how to do this.

Class Door is a sub-class of Opening whose main additional feature is the ability to fill
the opening with a moveable door. The door is rendered with the DrawCube function and
elongated with the Scale() function. It can be textured, but the texture does not tile, so the
results are often not as expected. The display list element for rotating the door about its
hinge point is captured, and is later used by the methods which open/close the door.

The design does not currently have an external file format for the architectural data.
This information is implicit in the parameters and the calling sequences of the
room/opening/door/whiteboard constructors in the World.world_create() method and the
the build() methods of the individual rooms. This may change as the project progresses.

The World class maintains a field for current_texture because the Unicon 3D graphics
API can only have one texture active during a rendering operation. Since loading textures

13

can trigger disk operations with large time delays, the code tries to minimize re-reading
textures. This project has motivated some additional development in the texture cacheing
that is done in graphics library.

 4.2 Class Structure
The code for this application follows the object model - there are no global variables

nor procedures outside of the classes. The classes are used mainly to group related data
and methods -There is very little inheritance among the classes listed in the previous
section. Class Door inherits from Opening, and Room inherits from Box. Also,within the
avatar file there is an inheritance structure.

There is however, a great deal of communication and cross-calling of methods
between classes. It is typical for most classes to have fields for object references to the
world object as well as several others. The world reference is often used to access the
system parameters that it contains, as well as the other major objects such as the active
window and the file that gives write access to the network.

14

 Description of Class Associations in UML Diagram Figure 2
1 SH118b is called from World to create the rooms, link their

openings, and store their data back into the World.Rooms list.

2 World creates the graphics window and then calls Camera methods
to respond to keyboard commands,and move the avatars, doors, and
camera. Fields in world provide the system level parameters which
initialize and control movement. World also passes events to
Camera.handle_keyboard_input. Also, World contains the data
structures for the architecture manipulated by camera.

3 World keeps the pointer to the chat window, and contains the

15

Figure 2 - UML Diagram of Major Classes

World

Wall

Box

Room

Opening

Door

SH118b

Camera

Chat_win

Commands

Session

Avatar

1
2

3

8 9

10
6

7
5

4

11

system level parameters which control its behavior. The Chat
window accepts commands which set/reset several of these
parameters, including the network file.

4 SH118b uses Opening to create openings in the walls of the rooms
it has previously created.

5 SH118b uses Door to create openings with doors in the walls of the
rooms it has previously created.

6 Camera creates or raises Chat window in response to keyboard
input.

7 Camera moves avatars in response to keystrokes.

8 Chat window uses Commands to parse and validate input lines.

9 Chat window uses Session to store the state of the user's online
session (currently only the userid).

10 Chat window commands create and delete avatars.

11 World maintains the table of Avatar pointers.

After reviewing the design, it appears that the following changes could be made:
a. Everything related to creating/maintaining the graphics window is gathered in

Camera which is renamed as Graphics_window.
b. A class is placed between World and SH118b for gathering the calls to create the

individual rooms and the calls to link them via openings and doors.

Internal Class Operation
a nsh.icn

This contains procedure main() which is a very simple top-level driver
which creates an object of class World() and runs its main methods

b class World()
This is the major top-level object. It creates the 3D graphics window. It is a
factory class for all of the rooms and all of the avatars. All of the parameters
which control the application are gathered here. The render() method drives
the OpenGL render step for all architecture. The event_loop() method is the
initial starting point for event processing.

c class sh118b()
Each room in the simulation is maintained in a separate file and class.The
major method in this class is build() which creates a Room object and then

16

functions as a factory class to populate the exits list with openings and
doors, and to populate its decoration lists with items such as whiteboards
and windows. Since openings and doors maintain lists of the rooms they
conect, those are filled in here.

d class Opening(), Door(), Wall(), Box(), Room()
These are the classes which create the static 3D architecture. These classes
typically have a create() method which initializes the data structures, a
render() method which is called to do the OpenGL rendering, and an allows
() method to do collision testing. The Room class includes method
select_nearest_door() which is used to determine which door to open when
the 'd' key is pressed.

e class Avatar(), Skeleton() and its sub-classes
This class and its sub-classes create, render, move, animate, and delete the
avatars. These are called either from the Camera for the user's own avatar,
or from Chat_win.handle_network_input() for the avatars of remote users.

f class Camera()
The handle_keyboard() method processes keystrokes in the graphics
window and calls other classes as necessary. The camera and door
movement methods are located in this class.

g class Chat_win()
This class provides the methods to create and draw the chat/command
window using the Unicon 2D graphics library. This requires keeping track
of and calculating the pixel positions to display individual characters and
this can be font-dependent. The method handle_keyboard_input() parses the
input lines and responds to them, usually by calling other methods in this
class. Since the network commands are given from the chat window, most
of the network methods are here as well.

h class Commands()
This is a utility class. It contains a list of commands accepted by the chat
window and server and some parsing/validation methods and the set of valid
chars accepted on a command line.

i class Session()
This is a small class which is intended to collect the data relevant to
managing the users session between logon and logoff. Currently, it only
stores the logon userid, but it may grow in the future as new features are
added.

17

 4.3 Event Loops
All external events enter the system via World.event_loop() which does a blocking

read from any of a list of event_sources - this list includes the chat window, the graphics
window and the network, depending on which of them have been activated. All this can
be coded with one simple call to select(), which vastly simplifies what would have to be
written in C sockets code. The event_loop() method then routes the events to handlers in
the relevant classes - class Camera for the graphics window, and class Chat_win for both
the chat window and the network. The chat_window and network both expect input lines
formatted with a simple command syntax which they parse by splitting them on
delimiters and running them through large "if" or "case" statements. This is pretty
straightforward.

The handling of events in the graphics window (class Camera) is more complex and
deserves description. All these events are keystrokes which are handled with a large case
statement. Some events are single keystrokes which trigger one operation and are done.
But the keystrokes which move the camera, avatars, and doors are somewhat more
complex.

For the camera and avatar, the desired behavior is to move the object at a reasonably
constant speed for as long as the key is held down, and then to quit moving immediately
when the key is released. This is currently done by processing the keystroke for the key
press and then putting anothe copy of this keystroke back on the end of the pending event
list. To prevent this from being an infinite loop, a test is made for the key release code
which corresponds to the key which was pressed - when one of these is detected, the
pending event list is purged of all pending key-press codes for that key - this stops the
loop and gives a rapid response to the user's key release. This technique of fiddling with
the pending event list is somewhat unusual, and it may be revised in future releases.

 4.4 OpenGL Display List
When OpenGL renders an object or a scene, it can build an internal list of the

transform and draw operations which take place. This is done in some internal format
which can be re-run through the hardware pipeline much faster than re-executing the
original operations - even if they are written in a low-level language such as C. The
Unicon 3D graphics API provides a similar capability by maintaining its own display list
using its own data structures, which are separate from and independent of the OpenGL
display list.. The Unicon display list can be accessed and manipulated at the Unicon
source code level.

Manipulating the Unicon display list is a key technique for achieving several forms of
dynamic behavior without re-rendering the entire scene (which is a much slower
process). When the avatars are first rendered the Avatar field render_list is used to
capture the sub-list of items which which are included on the Unicon display list. This
sub-list contains only the items for one avatar. When that avatar disappears from the
scene, say at \logout time, the sub-list for the avatar is matched against the entire Unicon
display list and matching items are deleted. This takes the avatar out of the scene without
re-rendering the entire scene. Other students have used a similar technique to produce

18

dynamically updated texture areas, such as whiteboards that can be drawn on in real time.
Additional support for display list manipulation will probably be incorporated into the
Graphics API.

In addition to entire sub-lists, the Unicon 3D API allows capturing individual OpenGL
transforms as Unicon methods. Objects can then be moved within the scene by calling
these methods with updated parameters and then calling the Refresh() procedure. This
prevents re-rendering the entire scene for each avatar motion, and is the standard
technique for providing animation.

 4.5 Network Commands
It is also useful to describe some of the transmit/response protocol sequences that

occur through the network interface. There is currently no network class. The field
World.net is a file type field in class World. Network commands are sent out by doing a
standard write() with this file as the first parameter - anything written in this way goes out
over the network interface. This is done in the code directly at several points rather than
encapsulating it in a network object. As noted above all network input comes in via
World.event_loop() and is passed to Chat_win.handle_network_input(). All network
transmissions must have syntax which is acceptable to the parsing utilities in the
Commands class, and use command words and characters which are gathered in lists in
that class. The Commands class is used by both the client and the server, and parsing and
validation are done on both sides.

1. At login the command
\login uid

is sent to the server. After accepting the login the server will send an ACK/NAK
message and some confirmation messages to uid. This will trigger uid to send the
message

\avatar uid x, y, z
back to the server where x,y,z is the current location of uid's avatar.
The \avatar uid command notifies other users that uid is now logged in and their avatar

code will read the uid.txt file and render it in their graphics window. The avatar data in
uid.txt is not currently transmitted over the network, so this file must be available in the
\avatars sub-directory on their machine. Keeping these files in sync across the network is
currently done manually, and is a prime candidate for automation in future versions.

Our original user still does not have its copies of the avatars from users who are
already logged in. The server does not yet store avatar state information - especially the
current location of the avatar. To handle this, the server will also broadcast an update
message to all logged-in users.

\update
this causes the other logged-in users to broadcast an \avatar uid x,y,z command for their
own avatar and its current location. Users who already have this avatar displayed will
ignore the message, while for the new user who began the logon process this will cause
all the other logged-in avatars to display on their terminal.

2. The command

19

\say text
is simply read by the server, and broadcast to all logged in users with the originator's uid
prepended. No filtering for groups or other criteria is done currently, but this is also a
prime candidate for change in future releases.

3. When the user types
\logout

in the command window, the client appends the uid and sends it to the server. The server
updates its data structures and then broadcasts

\delavatar uid
to all other users. This causes them to delete their copy of uid's avatar.

The server also sends back to the original uid a second
\logout

command, which confirms the action, and causes the client to close the socket, and delete
all avatars except its own.

4. If a user is logged in, any keystroke which moves the user's avatar will generate
sequences of either or both the following messages to the server:

\move uid body x y z angle
\move uid part_name dir angle

where part_name can be right_arm, right_leg, left_arm, or left_leg.
These will be broadcast by the server to all other users where they will cause the
following actions. The first will move uid's avatar to point x,y,z, oriented in the xz plane
at angle. The second will move a body part, such as an arm or a leg, to the position angle.
Sequences of these body part commands are used to produce some animation in the
movement.

 5 Implementation

 5.1 User Interface

The unicron\README.txt serves as a general gathering point for release notes,
changelog information, known bugs and limitations, user instructions, and todo items. It
is a good idea to consult it first. The steps for running the client are as follows.

1. Check the avatar directory and choose an avatar [userid].txt file which suits you.

2. Execute unicron\bin\nsh.exe - this opens in a 3D graphic window showing one of
the rooms in NMSU's Science Hall. The mouse can be used to resize this window by
grabbing/dragging its edges, and to give it keyboard focus. Otherwise,the mouse is not
used inside this window, and only single keystrokes can give commands. See below for a
list of keystrokes and their effects. No avatar is present yet. The arrow keys move the

20

camera position.

3. Use the 'c' key to bring up the 2D chat/command window. The bottom line of this
window acts like a simple command line and supports the commands listed below.Then
give the command

\avatar [userid]
from the command line. This will create an avatar in the 3D graphics window, and

when that window has focus the avatar will respond to its keystrokes. The user interface
currently has two separate windows for chat/commands and graphics. You can switch
between them using the mouse, or if in the graphics window, the 'c' key will bring up the
chat window. Both windows can be resized by grabbing/dragging their edges. The chat
window can have its colors and fonts set with the \attrib command described below.

4. To logon, be sure you have a network connection, then switch to the chat window
and check the server you want to connect to with the command

\server
if this is not correct, you can change it with the command

\server host:port
if you have started a local copy of the server and want to use it, then the command is

\server :4500
then to logon give the command

\login
this will log you into the server using the [userid] part of your avatar's parameter file
name. The avatars of all other currently logged in users should appear in your graphics
window, but their movements are remotely controlled by the user who created them. Your
keystrokes will affect only your avatar.
The comand

\say text
broadcasts the text to all other online users, with your userid appended. This creates a
basic chat capability.

The keystroke commands which work in the 3D graphics window are:

up arrow - move camera forward
down arrow - move camera backward
left arrow - rotate camera left
right arrow - rotate camera right
 ' w ' - look up
 ' s ' - look down
 ' d ' - toggle door open/closed
 ' o ' - reset original camera position (use if lost)
 ' c ' - open chat window
 ' v ' - toggle view-mode - inactive
 ' t ' - move avatar forward
 ' g ' - move avatar backward

21

 ' r ' - rotate avatar left
 ' y ' - rotate avatar right
 ' e ' - raise/lower avatar left arm
 ' u ' - raise/lower avatar right arm
 ' f ' - move avatar sideways left
 ' h ' - move avatar sideways right
 ' b ' - return avatar arms/legs to start position

The commands which work in the chat/command window are:
\avatar userid

creates the users avatar - only works if logged out
\delavatar userid

deletes an avatar - only works if logged out
\attrib

change window attributes - colors fonts ,this uses syntax documented
for the WAttrib() function and can crash the appl if the syntax is invalid

\close
closes chat window - only works if logged out graphics window stays
open

\logout
close net conection but keep chat window open this will delete all other
users avatars

\say text
sends text as a message to all other logged in users

\quit!
quick kill everything

\server [host:port]
query server:port, or set server:port if not logged in

\set parm [value]
query/set speed control parameters

The following network commands are generated automatically and generally should
not be given by the user:

\move uid body x y z angle
this moves uid's avatar to point specified by x,y,z, and oriented at angle, this is sent to

the server and then broadcast to other users automatically when uid's avatar is moved
\move uid part part_name dir angle

this moves the part_name body part of uid's avatar indirection dir with the increment
angle

\update
causes all logged in users to re-broadcast their avatar this is sent by the server when a

new user logs in and will cause the new user to receive a complete set of avatars

22

 5.2 Directory Structure
In the following discussion, the path delimiter is the Windows '\' backslash, and the

terms camera and eye are often used interchangeably for the users viewpoint in the 3D
graphic window.

The overall directory structure is as follows. This should be pretty self-explanatory for
experienced programmers. The only notes to add are as follows. This layout will be used
on all platforms and in the CVS. For network security, the system will use SSH tunneling.
This requires a client executable from external sources. This will be under an acceptable
license, and should be automatically configured and started from within the client
executable. It will not be compiled here.

The avatars currently have a parameter file of the form [userid].txt where [userid] is
automatically used as the network logon id - thus such a file must exist prior to logon.
The avatars look roughly like human-shaped robots and can use a small *.gif file to
display a face as a 2D rectangle. There are several faces available in the current
distribution. The parameter file and *.gif file must exist on all machines which are
intended to display them - they are not currently transmitted over the network to new
users, but this capability will be added in the future.

Textures are organized into one master directory, which is intended to be for those
which can be used anywhere, and sub-directories which are intended to be special items
which only apply to specific rooms (this is a suggested organization, but it is not
enforced in the code, so they can be used elsewhere if needed)

An IDE may be included in the future. This is not intended for compiling the
application, but will be the functional part of the application which permits collaborative
viewing/editing/debugging of code.

\unicron top level directory - contains README file
\bin client and server executables and any ssh clients
\dat data files

\avatars avatar parameter files, and face *.gif files
\textures textures which can be applied anywhere

\sh107 textures for specific rooms
\src all the source and make files

\shared code compiled into both client and server
\server server code
\client client code
\ide ide code (for future use)

 5.3 File Structure

Most of the files contain one class of the same name. The exceptions are:

\client\architecture.icn

23

which contains classes Opening(), Door(), Wall(), Box(), Room() and
\client\avatar.icn

which contains class Avatar() and all its sub-classes

in addition, the following files are utilities:

\client\keycodes.txt
This is a small reference file of the press/release keycodes for the lower
case alpha keystrokes. Release keycodes play an important role in
managing event loops - see the Event Loop section above.

\client\amaker.icn
This is a small standalone console application which will prompt the
user for various avatar parameters and then write an avatars\[userid].txt
file. It is scheduled for replacement in the next generation of the avatar
code.

 6 Evaluation
1. The CVE does work - multiple users can log on to a single server and have the

remotely controlled avatars of other users appear on their terminals in a 3d graphic
environment. 2D chat is also working over the network. In some sense this is both a
working proof-of-concept, and the platform for a lot of future work which will be done
here.

2. Network response time seems to be marginally acceptable in a subjective sense.
Now that we have a workable application, there will be many opportunities for
measurment, testing, tweaking, and improvement.

3. Server robustness in handling client crashes and other network events needs
attention. Some anomalies were encountered in informal testing.

4. The demonstration code samples were a very useful starting point in building this
application. The techniques they use are not too complex, but are just not obvious from
the textbooks and reference manuals. This is a general comment on most computer
languages, not just Unicon. It is also true that as an application grows in features and
complexity, the simplicity of many of the starting points gets obscured in the mass of
code, and large complex applications become a difficult starting point for understanding
the workings of the major techniques.

5. The higher level language features of Unicon, and the simplified graphics and
networking API's have resulted in much smaller and probably, more readable code than
the ususal C/C++ implementations. This translates into a faster development time, less
code to maintain, and an easier-to-grasp application - which are the normal claims of
scripting environments. This is certainly one of the more painless ways to bring 3D
graphics and networking together and get it working.

24

 7 Conclusions
1. It is possible to do 3D graphics of simple architecture with surprisingly simple data

structures and algorithms using the Unicon API interface. The results are adequate for the
intended uses, and it is likely that adding other capabilities will have higher priority than
re-working the 3D graphics data structures.

2. The Unicon language and API's have adequate performance for developing multi-
user, interactive, networked, 3D graphical applications on mid-range hardware, at least
for applications that do not require high-speed interactions.

3. Hacking, re-factoring, and prototyping from code samples are a workable
development method. There are two caveats - after something is working, serious effort
has to be devoted to getting the code clean, consistent, and trying to simplify the logic.

4. This is not a true conclusion, but a general bias from experience: A from-scratch,
top-down design should only be attempted by designers who have produced at least one
completely working version of the desired application. This is another version of the
"write one to throw away" school of development.

 8 Future work
There is a nearly endless list of things which can and should be done to this prototype

to make it into a usable CVE. Several other students have produced pieces which are
almost ready to be incorporated - these include voice transmission capabilities, a dynamic
whiteboard, a GUI interface for customizing avatars, and much more state persistence on
the server side. Then there is a big wish list of items which are needed to do actual
collaborative work, such as code viewers/editors/execution environments which permit
multiple users to see the same view as if they were all looking at the same terminal. Then
there are all the things which ought to be done to the code, from minor features, to a lot
more cross-platform testing. These are discussed in more detail below.

 8.1 Major functional additions
Audio transmission capabilities so that logged on users can speak to each other.
A dynamic whiteboard - the user can open a 2D window with basic drawing capability

and the ability to manipulate simple shapes. This 2D canvas will be mapped in real time
to the whiteboard areas in the classrooms on the 3D canvas of remote users. The intent
here is to create something like a normal classroom blackboard for sharing text and
simple drawings.

A GUI interface for allowing the user to set the characteristics of their avatar - this
includes size, color, facial image, and other details. This will then be stored in a named
file, and available for transmission over the network. This extends to other configuration
parameters.

25

The chat system, including audio, probably should implement a concept of groups
where groups can be defined by membership in some particular university class, interest
in particular topics, location, or on an ad hoc basis, much like IRC chatrooms. This would
permit a user to send messages only to specific individuals or groups, and similarly for
voice communications. The infrastructure for this will have to be done on the server side.
Similarly, the server should maintain much more user state information, permitting users
to start up where they left off. A system of user authentication using accounts and
passwords is another necessary addition on the server side.

At least several rooms of Science Hall with connecting corridors need to be included
in CVE for it to begin to take on a more realistic feeling.

The above items are either close to being working demos or have had preliminary
work done on them, and should be incorporated in the coming months. Beyond, this there
are a host of additional features which exist mostly at the conceptual stage at the moment.
High on this list, since this is a CS department, are features/applications which allow
multiple remote users to view/edit/execute/see results/debug code.

More complex and more realistic avatars is a line of development which will be very
much appreciated by everyone working on this project.

At least some items of computer equipment and office furniture should be coded so
that multiple copies can be included in the architectural layout, either for ambiance, or for
actual use as active objects.

 8.2 Programming and Design Changes
All or several windows may become widgets within an overall 2D GUI interface.
The API suport for manipulating display lists and event lists could be upgraded.
MIME file types could be transmitted, automatically detected, and trigger external

programs
The movement of the doors is not currently echoed to remote machines. This

obviously invites anomalous situations where the scene on the remote machine does not
correctly reflect all the actions going on, and may have other users avatars walking
through doors which are apparently closed.

Additional view modes for the camera are needed. Typical first-person games place
the camera at the avatar's eye so the user sees only a weapon pointing in the direction
which they can fire or move. Then there are over-the-shoulder views where the camera
moves in lock-step with the avatar and always sees the avatar from a constant angle. And
other variations are possible.

The student work on textures should be brought in and used to enhance the looks of
the rooms. Also, a more complete set of rooms needs to be incorporated in the model.

The current architectural model of wall/box/room is has many limitations - walls must
be parallel to the xy or zy planes , they cannot be placed at arbitrary angles. Currently,
everything in the model is rendered into the OpenGL display list and run through the
graphics pipeline at each update, not just the items which are visible from the camera
position. This is generally inefficient, and the wasted computation grows as more rooms
are added to the model, since only one or two rooms are normally visible from a given
camera position. Within the context of the current data structures, this can be improved

26

upon by adding a list to each room of the other rooms which are adjacent to it, and thus
should be in the render list when it is the current room. Avatar movement to a different
room would then cause the newly visible rooms to be added to the render list, and the
ones which are no longer visible to be dropped. It is also possible to completely drop the
current data structures and adopt the more complex algorithms and data structures which
are used by the major game engines.

The parameters which a user might need to adjust need to be gathered in one easily
accessible place, perhaps as part of the avatar creation process, and should be stored in a
data file on the client. This includes the avatar parameters, speed parameters which may
need adjustment for the users hardware, and possibly, the ability to remap the keyboard
action keys to the user's liking.

Currently, only avatars which are included in the distribution will be correctly
rendered on all machines. Local modifications and additions to the available faces will
not show up on remote machines. What is needed is a way to encode and transmit avatars
to remote machines when a user logs on. In addition, for a truly persistent world, the
server needs to keep a complete record of the avatar's current state, and restore that state
to the user at logon. This state includes the parameters which define the avatar, its current
position and, in the more distant future, the state of any collaborative work it was engaged
in.

Avatars do not have collision detection with each other, and this should be added.
All floors are currently at 0.00 elevation, and avatars cannot move in the vertical plane

to move up stairs or ramps. There are rooms in Science Hall with elevated seating as in
some theatres, so this is a possible addition.

SSH connections currently involve some manual fiddling at the command line outside
of the CVE environment. This needs to be automated.

Numeric data sent over the network to update the avatar's position uses formatting
which is probably inefficient.

The Unicon 3D graphics API may benefit from creating an object to encapsulate the
display list and allow several operations to be done on it in an atomic fashion. In
particular, it would be nice to have methods for saving and deleting portions of the entire
scene, such as single rooms and avatars. Currently, each developer writes their own code
for these operations, and having standardized methods would save time and produce
better structured code. Similar comments to the management of event lists.

There are issues with updating graphics windows when multiple instances of the CVE
are run on a single client.

It will be helpful to get the developers working from a single CVS repository, and to
standardize at least some aspects of coding styles.

 8.3 Testing
Most of the work so far has been done on Linux and Windows environments. Because

the Unicon code and libraries are designed to be cross-platform, it should port pretty
quickly to other Unix platforms, but this needs to be done and tested.

Testing with multiple users has just begun, and bandwidth issues have only been
looked at in a cursory fashion.

27

This work has identified various bugs in the Unicon libraries which need attention.
Very little testing has been done over dial-up connections, but they will likely be very

common for distance learning work within the state.
In general, server robustness in the face of transmission failures needs additional work.
Identifying a suggested minimum recommended hardware configuration for adequate

performance should be done.

28

 9 Appendix A - VRML and Level Editors

The overal motivation for this work is the Unicron project as described in detail at
www.cs.nmsu.edu/~jeffery/vcsc/ . Briefly, the goal of this project is to produce an online
virtual world with a 3D graphical interface running on the user's local machine essentially
an environment that works like an interactive, networked 3D video game that simulates a
university computer science department. The two most immediate uses will be distance
learning within the New Mexico state college network and group collaboration. This open
source project will include tools which allow users to modify and build their own
variations of the virtual world.

3D graphical environments as seen in today's computer games and virtual world
simulations provide the user looking into the terminal with the amazing experience of
moving around in and interacting with a simulated world. However, the coding behind
these graphics is another story. The graphical primitives which are computed and
displayed are really primitive – rectangles, cubes, triangles and meshes of triangles, and
some basic curved surfaces such as spheres which are actually a mesh of triangles.Getting
from rectangles and triangles to a scene which looks even modestly realistic is typically
very tedious and produces a lot of code most of which consists of long lists of 3-d
coordinates for each of the items. This is hard to write, hard to visualize when working
with the text, and very difficult to read and modify. It takes very little time working with
such code to send one off in search of software which will make the process more
palatable. 3D-editors allow the user to manipulate 3D objects in a 3D environment using
familiar point/click/drag techniques and produce the code and the coordinate lists
automatically behind the scenes. The 3D editor's output code or file is then typically
viewed from within some other software module, generally called a client, a browser, or
a game engine, much as HTML is produced in text editors or GUI editors and then
viewed in a web browser.

The process of getting 3D graphics to appear on a 2d screen has spawned a long list of
editors designed for several variants of this task, corresponding to specific types of use.
There are 3D game or “level” editors, CAD/CAM editors specialized for machine parts or
for architectural design, editors tuned for animations, and several other categories. An
interesting new category comes from companies that enable web content providers to
create virtual worlds for purposes ranging from architectural walk-throughs to personal
creativity. These worlds are then hosted under various business arrangements. These
companies supply the editors and some web space and/or graphic libraries which can be
used to simplify creation of the users virtual worlds.

Editors, including 3-d editors, store their output in a wide assortment of file formats.
Much like the early days of word processing, there are a plethora of 3D graphic file
formats in existence – most of them proprietary and specific to particular vendors and/or

29

software environments. The legal, compatibility, and cost issues involved here preclude
most formats, and hence most 3D editors, from use in our project.

A basic goal of this project is to produce completely open source code. In searching
for editors we focused on those that support open file standards and gave strong
preference to editors which are themselves open source.

The work that has been done up to this point has consisted of reviewing almost every
non-game 3D editor that could be found on the web. These reviews consisted of reading
the products web site, reading comments by other users – either on the web or on usenet's
comp.lang.vrml newsgroup, downloading anything that was free and looked interesting,
and buying a couple of cheap ones. Next we worked through the documentation and
tutorials, and constructed elementary models of the NMSU PLEASE lab with a couple of
them. Game editors generally proved unsuitable beyond the reading stage because of their
proprietary file formats. Professional CAD/CAM editors were similarly unsuitable due to
their cost.

We had unexpected difficulty finding an editor which met the project goals, We
scanned a wide variety of 3D editing enviroments and pursued just about anything that
looked cheap, workable or could be downloaded for free. Many of the editors that were
easiest to use were either commercial or produced disappointing VRML output or both.
Finally, we found Pharus, a web-based editor that produces outstanding output and is free
for non-commercial use.

If the Pharus editor had been discovered earlier, it is likely that a lot less searching and
a lot more useful work would have been done by this point in the project.

The next section of this paper discusses the goals and objectives of the main project as
they apply to the selection of 3D editors. Next it provides some detail on the editors
which were examined and the reasons they were rejected. A section is then devoted to
discussing the Pharus editor.

 9.1 The VRML Language

Currently, the only completely open 3D file format standards are VRML and X3D.
Several proprietary formats could be considered semi-open in various ways but there are
obvious pitfalls involved in using them.

The VRML (Virtual Reality Modeling Language) language was developed in the mid
1990's primarily to allow 3D graphics to work within web browsers. Two official
standards have been released as open standards - versions VRML 1.0 and VRML 97.

30

There was a great deal of activity around this language in the mid to late 90's – several
VRML-capable browser plug-ins were released, a fair amount of graphics demos and
documentation were written, and other software begant to support VRML. This activity
seems limited currently, however much of the older software and demos are still both
available and free.

There is current activity around the X3D 3D graphics language which is a dialect of
XML which maintains backward compatibility with VRML 2.0 and will be an open
standard. This work looks promising but is far from complete. The X3D standard is not
yet finalized, and the available software is limited, difficult to install, and generally not
very mature. The same is true for tutorials, documentation, demos, and support from
other software. For these reasons, the VRML format is currently the project choice for a
graphics file format.

The VRML file format is an ascii text file with an extension of *.wrl. This means that
it can be developed, viewed, and modified in any ascii text editor. Generally, VRML is
written in an editing environment and viewed in a separate browser environment. As with
HTML, there are several variants of this editing environment, from a plain text editor, to
enhanced text editors to full wysiwyg editing environments, with several mixtures in
between. Thus, there are VRML editors which are oriented to doing most of the work in
text mode or by filling in parameters in text boxes and then rendering the result. We have
been looking for editors that work in the opposite direction - build 3-D models on the
screen using well-known point/click/drag editing, and then output the VRML code
without manually fiddling with the text. It is our hope that such editors will be easier for
our users to learn and use for building their own virtual worlds. Such editors require less
knowledge of the internals of the VRML language and can be more visual and,
hopefully, more intuitive to use. This also should translate into reduced training time as
the Unicron software is rolled out to other state universities.

Having chosen VRML there are still a number of issues to discuss. In particular, a
given scene can be written in VRML in multiple ways – some good for particular
purposes, and some not so good. This is true for any non-trivial program in any computer
language. Two issues which we have found to be of particular concern are the following:

1. Polygon mesh vs. structured objects

At the lowest level, 3D scenes are processed as polygon meshes – generally meshes of
triangles. At some level within an editor, these are the data structures. When exporting
the scene into VRML it is easy to produce a file which is structured as one or a few large
polygon meshes. Such files can view nicely and may be convenient for transporting to
other software. They have 3 problems, however – they tend to be very large, they are very
difficult to understand or modify, and they tend to grow rapidly with with the number of
objects such as office furniture included in the scene. As noted above, this was one of the
problems with both the punchsoftware editor and the Lightwave editor. Such editors
produce can produce nice-looking graphics but their VRML outputs are not as useful as

31

we would like.

2. Protos/externprotos for repeated objects

Many scenes use repeated copies of the same object - in our world, office furniture
such as chairs, desks, PC's, bookshelves, etc. are obvious cases. VRML provides an
EXTERNPROTO construct, which is much like the concept of an external function in
standard programming – code it once, use it many times. This technique should be used
as much as possible to structure a VRML file. Not all 3D editors do this, however, and
the documentation on this issue is limited, so only hands-on experimentation shows what
is happening. Thus, a key part of this work is will be finding or building a library of pre-
built objects - particularly office furniture, and perhaps landscape items visible through
the windows. In our experience, decent looking and realistic ones are very tedious to
build, and require a bit of artistic skill.

 Recommended VRML Viewers/Browsers:
VRML code requires a viewer to display it. There are only a few of these available,

and we recommend the following ones, with Blaxxun being the preferred one, and
GLView as a second choice which is useful to produce a second view/opinion on a file.

Blaxxun Contact 5.1
http://www.blaxxun.com/

This is one of the companies trying to make a business model out of creating software
for CVE's of various types. Contact is a VRML browser which runs under Windows IE,
and other web browsers. It is a commercial product which has free versions for non-
commercial user and has currently active support.

GLView
http://home.snafu.de/hg/

This is the home page for GLView 4.4 - a very nicestandalone VRML browser for
W2k. The browser has not been updated since 11/2000

Cosmo
http://ca.com/cosmo/

This is the homepage for the Cosmo browser, It runs on IE and Netscape under several
versions of Windows and is considered one of the best. Originally written by SGI, it has
migrated to the ownership of Computer Associates. They have kept it available but do not
do any maintenance or development on it.

 9.2 Survey of Existing 3D Editors

The existing editors can be roughly grouped as follows:

32

a. Video-game editors

There are lots of these in existence. Most major video game environments provide
there own, and 3rd parties have produced compatible ones. Video games almost always
use proprietary file formats and these editors are short on VRML import/export
capabilities. These editors were not examined in much detail, but if we find one with
good VRML support it would be of interest.

b. Professional CAD/CAM editors
These are generally very expensive and not available as packaged software. Their

VRML support is spotty. Autodesk is the market leader and is moving toward proprietary
file formats. The cost of such software would prevent the average open-source user from
using them, so we have been looking elsewhere.

c. Intermediate-level CAD/CAM editors
Most of the editors in this category are commercial, although several have free

downloads. Typically, they have several versions and price levels, and the ones which
import/export VRML or *.DXF are in the $150-600 price range. The usefulness of their
VRML code is unknown. CAD/CAM editors have a reputation for producing high-
polygon count mesh-structured files – this is generally not a problem in professional
CAD/CAM enviroments, but is undesirable for virtual worlds.

Cycas
http://www.cycas.de/

This is targeted at the architectural and interior design fields. It is very precise and can
do top quality rendering. It has a free download, but the price is around $250 for the
VRML-capable edition.

Design Workshop Lite
http://www.artifice.com/dw_lite.html

Originally written for the Mac and ported to Win32 where it works very well. It has a
very nice 3D UI design. The VRML-capable edition is ~$250 but there is a free
download which exports only *.dxf files. The lite edition appears not to have been
updated since 1998 .

Octree
http://www.octree.de/ and look for OCTREE-CAD

This is apparantly a product of a professional architectural firm rather than a software
house. There are several unix versions and a less-capable windows port. It is free for non-
commercial use, but the VRML export feature is not planned for the future and not
available currently. This looks very interesting and we will monitor it.
Internet Space Builder
http://www.parallelgraphics.com/products/isb/

This is commercial but has a free download which does export VRML. The free

33

version is limited to 1400 faces in the output file and that doesn't go very far when
several of their basic items of furniture take 100-300 faces. They have an unusual
approach to the UI - everything starts with cubes, or other basic geometric figures, and
then uses set intersection to cut out pieces and form the model. It works and has a pretty
good UI, but looks very tedious.
d. General 3D and VRML editors

Most of these do not seem to be aimed at doing building interiors, but several could do
the avatars.

Blender
http://www.blender3D.org/

This is open source, has a large community, and lots of documentation. However, none
of the documentation points to architectural interiors as a standard use - instead it seems
to be especially good for building and/or animating polygon-mesh objects. It has a
widespread reputation for being difficult to learn.

mjbWorld
http://www.euclideanspace.com/

This is a 3D editor which can export VRML files. It appears to be a decent effort, but
there appears to be only one programmer supporting it. The home page has several good
tutorial pages on 3D issues. It appears to be open source and has a Java version.

Milkshape
Wings3D
White-Dune

e. Retail Home Design Packages

These are available via retail channels and will cost $70-250 to get the versions which
can export VRML. IMSI and Broderbund have packages, but from scanning reviews and
comments it appears that the that the best of the lot are the ones from
www.punchsoftware.com so the following was purchased to get some hands-on
experience.

Punch Professional Home Design Suite – Platinum version

This is probably the nicest and most capable consumer-level package if you want to
design a new home or to do some home re-modeling. It has many good features for doing
architectural interiors, including a very easy to learn and use GUI, a nice collection of
furniture, architectural elements such as doors and windows, and extensive textures.

What works:
It is fairly easy to create architectural interiors, color the walls, create transparent

34

windows, possibly put landscaping outside, and put basic office furniture in place. This is
done in a combination of 2-D and 3-D editing, with the 3-D results visible in separate
windows. The camera can then walk/fly/orbit the resulting model from both the outside
and the inside. There is no collision detection in the punch editor, so the camera can just
move through walls, etc.

What doesn't seem to work (yet):
a. Cannot color the ceilings for some unknown reason.
b. It has a very nice set of textures, however they seem to be in a proprietary format and
do not export with the VRML. Thus, only flat colors can be used in the exported model.
 Many objects such as windows and doors are automatically created with textures such as
wood-grain. These look nice, but must be converted back to flat colors for export.
c. The office furniture objects are only approximately what we would like to have. Also,
they use a lot of textures which have to be converted back to flat color for export.
d. Does not seem to be able to create working lights. Also, there is no way to put
fluorescent panels on the ceiling.
 The exported VRML models seem too dark in the glView browser.
e. No obvious way to create blackboard/whiteboards on the wall. No classroom seats, if
we want them.
f. Some of this may be fixable by fiddling with the VRML in external VRML-oriented
text editors.

It uses a proprietary internal file format. Its VRML output does work, but was
disappointing on several issues:
1. No use of PROTOS or EXTERNPROTOS – each piece of furniture was modelled in
place leading to very high polygon counts and huge file sizes. For example, each office
chair in a scene adds 100kb to the file size. A basic layout with 3 rooms, 6 desks, and 9
chairs generated a 2Mb file .
2. Door and window openings were not real openings, but simply a thin black polygon
marking the opening.
3. Lighting had to be completely re-worked manually after VRML export.
4. An avatar node had to be added to get decent navigation.
 5. Some of the above items can be re-worked by manually editing the *.wrl files, and re-
building the furniture as EXTERNPROTO files, but fixing the door/windows looked like
a lot of work. Identifying which polygon in a100kb text file matches which polygon on
the screen is very tedious.
6. Overall, the VRML output was only marginally satisfactory. However, this editor did
an excellent job of demonstrating the pitfalls of VRML and that an editor with a VRML
export feature still requires hands-on experience to judge the usefulness of the output in
our context.

f. Commercial Virtual World Environments
Octaga
Blaxxun
Int3D

35

Pharus from www.int3D.com

Having reviewed the pros and cons of many editors listed above in various levels of
detail, the best available choice seems to be Pharus. This is a commercial product which
is free for non-commercial use. They hope to induce users to build virtual VRML worlds
which run from their own web servers. Commercial uses could include architectural and
interior design and furniture firms building 3D walkthroughs of their designs which their
clients could view on the web. From our standpoint it has the following pros and cons:

Pros:
1. This editor is designed for producing virtual worlds based on typical real-world
buildings and interiors.
2. The VRML code produced is very small and is structured to use libraries of objects
such as doors, windows, and office furniture by calling them as externprotos.
3. Subjectively, the learning curve for using this editor is quite reasonable compared to its
capabilities. On this issue of ease of use in producing buildings/interiors I would scale
the editors roughly as:

Group 1 – easiest
Punch
Group 2 -
Pharus
Design Workshop
Cycas
Group 3 and up -
all the rest

where group 3 is not very close to group 2.

4. It should be possible to use local copies of all required externproto objects thus
creating virtual world environments which are completely independent of the systems and
libraries on the int3D servers.

Cons:

1. It is not fully open source but we can probably still use it. If int3D maintains the free
for non-commercial use, our users can use it to build their own modified worlds.

2. The legal conditions which control what can and cannot be done with its library of
furniture and architectural objects are not entirely clear.

3. The furniture library is mostly focused on elegant designer furniture for a home

36

environment. There are a few items that fit an office theme, but others will be needed.
This leads to a concern for techniques for using outside libraries.

4. VRML objects from other sources can be incorporated into the 3D worlds which are
created. It does not look like this can be done by including them in the Pharus editor
menus - it will probably have to be done by manually editing the VRML output code.

5. The file save procedure from the Pharus editor is a bit of a kludge on their part. This is
due to the editor itself being written in VRML/javascript and running only in a specific
VRML environment. On the other hand, this means the editor code is essentially open for
examination and study, although not for modification.

Overall, its not perfect, but it seems workable for the overall project. The combination
of free for non-commercial use, a focus on buildings and interiors, pretty easy learning
curve, and very good VRML output has not been matched by any other editors which
were examined. At a minimum, it has given us confidence that small, efficient VRML
files can meet the graphical requirements of the Unicron project. This provides the basis
for further work aimed at completing a basic scene and getting usable tools into the hands
of the final users.

37

 10 Bibliography

1. “The Annotated VRML 2.0 Reference Manual”,
Rikk Carey and Gavin Bell, Addison-Wesley, 1997,
ISBN 0-201-41974-2 .

2. “The VRML 2.0 Handbook”, Jed Hartman and Josie
Wernecke, Addison-Wesley, 1996,
ISBN 0-201-47944-3 .

3. “The VRML Sourcebook”, Andrea Ames, David Nadeau,and John Moreland, Wiley,
1996,
ISBN 0-471-14159-3 .

4. "The OpenGL SuperBible", Richard S. Wright Jr.and Michael Sweet, Waite Group
Press, 1996, ISBN-1-57169-073-5.

5. "Graphics Programming in Icon", Ralph Griswold, Clinton Jeffery, Gregg Townsend,
Peer-to-Peer Communications, 1998, ISBN-1-57398-009-9.

6. "Programming with Unicon", Clinton Jeffery, Shamin Mohamed, Ray Pereda, Robert
Parlett, draft manuscript, contact jeffery@cs.nmsu.edu

38

 11 Notes and web sites

Much of the research for this paper was done on the web. Here is an annotated
bibliography of web resources.

http://www.sics.se/dce/dive/dive.html
SICS is the Swedish Institute of Computer Science which is highly respected. This

project sounds very similar to Unicron. The current level of activity is unclear. Do they
release their editor?

http://www.web3D.org
http://www.web3D.org/TaskGroups/x3D/faq/
http://www.web3D.org/fs_weblinks.htm

This is a very good starting place for all 3D issues on the web. It has a large and well-
organized links page:

http://web3D.about.com/?once=true&
http://virtuality3D.co.uk/main.php?p=home

These are other good starting points.

http://www.faqs.org/faqs/graphics/fileformats-faq/part3/
This is a master listing of information on graphics file formats.

http://www.linuxartist.com/3D.php
This contains a large listing of linux modeling links. Half of the links are dead.

VRML

http://virtuality3D.co.uk/main.php?p=home
This contains a good list of links to vrml software:

http://web3D.vapourtech.com/tutorials/vrml97/index.html
This is an excellent VRML tutorial, especially for beginners.:

http://web3D.about.com/library/weekly/blatozvrml.htm
This is a listing of free VRML models. Several of them are buildings. It is good for an

idea of what can be done.

http://www.octaga.com/vrml/chamber.wrl
This is a very impressive VRML demo of a building interior. Unfortunately, it was

done in the Autodesk Lightwave editor which is very expensive, and the file is structured
as one huge polygon mesh which is intractable for study or editing.

39

http://www.openvrml.org/
This group is building a cross-platform VRML browser which will include linux. The

project is active but the software is labeled alpha.

http://www.gertstein.org/hal/vrmledit.html
This is a listing of VRML editors with brief comments on each. It is a few years old

and somewhat outdated.

X3D

http://www.web3D.org/TaskGroups/x3D/translation/README.X3D-Edit.html
This is the main (or only?) X3D editor currently available.

http://web.nps.navy.mil/~brutzman/
Don brutzman is a CS professor who is very active in developing X3D and getting it

through the standards process. There are also notes from his class in VRML
programming.

Retail Home Design Packages

http://www.b4ubuild.com/links/cadd.shtml
This is a very good overview site for consumer home-design software, and the whole

site is devoted to the issues of home building and remodeling.

http://www.consumersearch.com/www/computers/ home_design_software/fullstory.html
This is a good summary of reviews of consumer home-design software. The short

story: Broderbund 3-D Home Architect and the packages from www.punchsoftware.com
are the only ones worth looking at.

Professional CAD/CAM/Architecture

http://www.tenlinks.com/CAD/PRODUCTS/AEC/design.HTM
This is a good overview site for expensive and proprietary architectural software:

File Formats

The most popular or commonly implemented format for CAD/CAM and architecture
is the *.dxf format created by AutoDesk in the early 90's. Version R12 has public
documentation. Version R13 which is later, has documentation which is available, but
expensive. AutoDesk seems to be tightening its proprietary hold on the next generation of
the format. The R12 format is easy for programs to parse, but the difficulty of rendering
is unclear at this point. The public documentation for R12 is at:

40

http://usa.autodesk.com/adsk/servlet/ps/item?siteID=123112&id=2882295&linkID=2475
323

3-D File Format Conversion
There does not seem to be much open-source software available in this category, and

not much commercial software here either. The $150 version of IMSI Hijaak Pro claims
these capabilities - ie. VRML <--> *.dxf, but their website gives very little useful detail
on the issues. In particular, it is likely that such conversion has a lot of imperfections -
just as moving word-processing documents between editors seldom works perfectly.
IMSI does have a free 15-day download available.

Others sites worth looking at:

http://www.coin3D.org/
COIN is not an editor, but a C++ API released under the GNU license. It runs on top

of OpenGL and appears to provide the next higher level of graphics operations to make
using OpenGL easier. The site links to some interesting applications which have been
built using the COIN library.

http://ftp.arl.army.mil/brlcad/
BRL-CAD is a free constructive solid-modeling package which was developed by the

US army for use in its own projects. It is in source-code only and its image gallery does
not include any architectural interiors.

http://www.ac3D.org/pages/gallery
This is a 3D editor for unix, linux, and windows It has a free trial and costs $50. It

exports VRML, *.dxf and other formats. It is questionable for doing architectural
interiors.

http://moonlight3D.net/faq.php?sid=70babde64cc174d5917f6fd2f2c2a467
Moonlight3D is a 3D editor with some respect in the open source community. It

exports VRML, runs on linux only, and is supposed to have an easier interface than
blender. Its architectural capabilities are unclear. Its project stability is questionable – it
started out as open source, went to closed source, and died. New developers took over the
last open release and are working to improve it.

http://ayam.sourceforge.net/
This is another free 3D modeling environment for the RenderMan interface and format. It
supports linux and Win32. There were no architectural samples among its demos. From
reading the faq, it may be very messy to install. The lead developer is a student and there
may be some dependencies on his university system.

41

