
Integrating the Moodle Course Management System
into a Collaborative Virtual Environment

Project Report
Submitted in

Partial Fulfillment for the Degree of
Master’s in Computer Science

by Rashmi S Ramagiri
under the guidance of

Dr. Clinton Jeffery
Assistant Professor, Department of Computer Science

Department of Computer Science
New Mexico State University

Las Cruces, NM 88003

1

Table of Contents

 Abstract

1. Introduction

2. Unicon ODBC

3. Moodle

 3.1 Moodle Modules

 3.2 Working with the Moodle Interface

 3.3 Installing Moodle on Linux

 3.4 Configuring unixODBC

4. Requirements

 4.1. Functional Requirements

 4.2. Non-functional Requirements

5. Design

6. Implementation

 6.1. Moodle.icn

 6.2. nshworld.icn

 6.3. CourseTabItem.icn

 6.4. nshdlg.icn

7. Graphical Outputs

8. Related work

9. Conclusions and Future work

10. References

2

Abstract

A virtual environment that acts as a user interface to provide communication between human-
human in addition to human-machine is called Collaborative Virtual Environment. An Educational
Virtual Environment is a collection of integrated tools enabling online learning by providing a
delivery mechanism which involves tracking of student activity along with access to resources
virtually. Educational CVEs are a technological breakthrough with the potential to provide students,
teachers and learners a platform for discussion and sharing of views. CVEs have tremendous
potential to enhance the learning environments of the future; they provide a real time environment
for users to interact when they are physically in two different geographical locations. The
instructors can operate courses remotely and the students can access the course materials through
the Collaborative Virtual Environment. This project is an attempt to provide
educational/courseware support for instructors and students in the Collaborative Virtual
Environment. The design includes the integration of features of Moodle (Modular Object-Oriented
Dynamic Learning Environment), a free, open source course management system for online
learning. This involves integration of a MySql relational database which allows courseware support
to the Virtual Environment called unicron. This project is written in the Unicon language which
manipulates SQL databases through the Open DataBase Connectivity connection mechanism.

.

3

1. Introduction

Virtual Reality (VR) sprang onto the public stage in the 1980’s due to media interest and related
works of science fiction. VR promised to change the way people experience and interact with
computers. One of the major fields in VR is Collaborative Virtual Environments (CVEs). The main
goal of CVEs is to develop better and more effective ways to use computers for communication
[Churchill].

With the advent of online learning through the Internet, a new breed of educational environment has
emerged rapidly, wherein individuals can share information through remote interaction with each
other. Students can collaborate to learn, solve problems and be highly productive and efficient. A
Collaborative Virtual Environment is a computer-based, distributed, virtual space where people can
meet and interact with others. Collaborative Virtual Environments can be used productively in the
field of education, as a potential technology to facilitate more active student and instructor
collaboration and learning. Collaborative Virtual Environments help to provide distance education
and are effective substitutes for bonding people and for in-person social necessities. Collaborative
Virtual Environments are of particular interest to researchers and students in areas related to
computer supported cooperative and collaborative work and human computer interaction. They
allow the instructor to teach courses at their own technological comfort level by providing
templates for course management.

Though existing tool such as Centra, provides whiteboard, handraising, webpages sharing/co-
browsing. It does not offer the advantages of educational CVE which include nearness and social
presence through a shared virtual space populated by avatars. A student should get the real class
room experience even while accessing the courses remotely [Jeffery05]. A research team at NMSU
has developed Unicron, a Collaborative Virtual Environment for the purpose of computer science
distance education that brings a class room experience to students in remote locations. Unicron has
been modeled after the first floor of Science Hall at NMSU. Unicron will provide distance
education which will supersede the traditional video-conferencing and use of educational tools such
as WebCT by integrating these existing educational technologies into the 3D virtual community.

This report presents the design and implementation of the courseware support in a collaborative
virtual environment allowing remote student-instructor interactions. This is achieved by integrating
the features of open-source course management software called Moodle that supports a social
constructionist framework of education and allows educators to create an effective, productive
online learning environment, hence making online learning more.

The project was developed on Linux (2.6.11.4-21.9-SMP) running on a Pentium 4 processor
running at 3 Giga hertz with HyperThreading. The memory of the system was 512MB. The version
of the unicon compiler used to build the project was unicon version 11.3(beta). The project required
a few other packages, they are mysql-4.1.10a-3 and
unixODBC-2.2.10-3.

4

2. Unicon ODBC

The term Unicon stems from Icon [Jeffery03]. Unicon is platform-independent, portable, robust
language and is well-suited in developing object oriented applications, network centric applications,
and database programming.

Database Architectures and ODBC
Unicon supports databases such as DBM and MySQL. A connectivity mechanism is needed in
order to communicate with databases such as MySQL etc. The ODBC interface serves this purpose.
Unicon’s SQL tools require numerous software components. Firstly, a SQL server is required for
ODBC connectivity, along with a generic account with suitable privileges on the SQL server is
required for connectivity. Lastly the ODBC driver manager and an ODBC driver configured to suit
the database requirements are needed on the clients. The next task is to code the Unicon client in
order to connect to the database [Balbi02].

Opening a SQL Database
A sql database can be opened by an open () function is used to open a connection to a SQL
database. For the integration of moodle into unicron, the database operations were performed on
moodle database. For more information about unicon ODBC, please refer to [Balbi02].

An example of the open () function that connects to the database is shown below.
C:= open (“cve”, "o","moodle", "username", "password")

Querying and Modifying a SQL Database
The sql() function is used to perform queries on the database[Balbi02]. The two arguments are the
database and a sql command such as a select, update, modify etc. The sql function places the cursor
at the beginning row of the selected result set.

One example of the sql function is.
sql (C, "select firstname from person where firstname like ‘Andr %'")
The second argument in the above sql call returns rows that match the criteria of all names starting
with Andr.

Navigating across the selected rows in a table
The fetch() function is called in order to navigate across the resultset (the returned rows). The
fetch() function takes the database name as its argument. The return value of this function is a
single row in a table.

If a fetch (C) returns a row containing column firstname, one can write
row: = fetch (C)
write (row.firstname)
When the fetch function has one argument, fetch (C) moves the cursor forward one position.
When passed with two arguments, the database name and the column, fetch (C, firstname) returns a
single column from the current row.

5

SQL Types and Unicon Types
Some of the data types supported by SQL and Unicon are CHAR and VARCHAR that correspond
to Icon strings, INTEGER and SMALLINT data types that correspond to integers, FLOAT and
REAL that correspond to reals etc. The conversion between SQL and Icon is fairly easy and with
minimal changes to the data format. One needs to understand the pros and cons related to SQL im­
plementations.

3. Moodle

Moodle is an open source web-based course management system designed based on the principles
of social pedagogy. Moodle produces Internet-based courses and websites; it requires a web server
with integrated PHP (which is the scripting language) and database support [moodle].

Moodle supplements the traditional face-to-face learning by providing online-classes, is user-
friendly, simple, efficient, compatible, easy to install on any platform that supports PHP. It requires
an underlying Sql database.
The entire moodle system is managed by an admin user during setup. The administrator is permitted
to customize the site colors, fonts, layout etc to suit his needs. The Moodle is then added with the
required activity modules. The source code is easy to modify to suit the student’s needs.

3.1 Moodle Modules
This section discusses the different modules supported by moodle.

3.1.1 Site Management
This module is used for site management used for web interface which has no importance for
unicron. This application incorporates authentication mechanisms using plug-in modules, which
allows the legacy systems to be easily integrated. The standard email mechanism enables students
to create their own login accounts which are verifiable by confirmation. The LDAP mechanism
facilitates login accounts to be checked against an LDAP server. The administrator can specify
which fields to use. Typically the IMAP, POP3 and NNTP are checked against mail or news server
and security provisions such as SSL certificates and TLS are supported as well. This application
also supports external authentication wherein any database with at least two fields can serve as an
external authentication source.

3.1.2 User Account Management
Though this module is important for user account management, its not been incorporated in unicron
yet, all the user account management is done through the web interface provided by moodle.
Different sets of accounts can be created on the server. The admin account has administrative
privileges and controls course creation and user accounts. Every individual has one account
assigned for the entire server; however access privileges may vary for these accounts. A course
creator account can be assigned privileges to create courses and teachers typically have editing
privileges which can be revoked to prevent course modification. Teachers can also enroll and
unenroll students manually. This process can however be automated. Security is incorporated
through key mechanism such as enrollment key to prevent non-students from accessing the course
page. Time-zone data and language information can also be accessed by the user.

6

3.1.3 Course Management
A full teacher has admin privileges to restrict other teachers and also to control the over-all settings
for a course. The teacher can set the course formats by week, by topic or by social format. An array
of course activities such as Quizzes, Forums, resources, assignments, etc can be developed. The
course catalog homepage could be used to display any changes to the courses. The webpage can
also be used to post grades for quizzes and assignments. These web pages can be edited using a
web-based programming editor such as an HTML editor. Activity reports can also be generated for
logging and tracking access information. Graphs and visual information can be embedded in these
reports.

3.1.4 Assignment module
This module has been completed integrated into the unicron. It is used to post assignments with due
dates wherein students can upload their assignments. It also provides a provision to timestamp
student submissions and to display grades.

3.1.5 Chat module
This module has already been integrated in unicron in the form of text-based communication. It is
unlikely that, this module will be integrated in the future. But the logging information is used to the
full extent by logging in all the chat information for archiving purpose.

3.1.6 Choice Module
The Choice Module uses the principle of polls to obtain student feedback through votes. It also
supports graphical data. This module has not been integrated into unicron.

3.1.7 Forum Module
This module has been partially integrated. It enables discussions relevant to teachers, courses and
students. Discussions can be single or multi-threaded. The module also supports images and also
allows discussion threads to be moved from one forum to another.

3.1.8 Quiz Module
The quiz module relies on a database of questions to generate a quiz for every student. Questions
can be sequential or random. The module allows quizzes to be created automatically and inserting
the time-frame for each quiz. At the teacher’s discretion, quizzes can be set for students to attend
multiple times and can also include images, true or false questions, short- answer questions,
embedded answer questions, etc.

3.1.9 Resource Module
This module has been partially integrated, only text information are displayed. The module supports
interactive content such as video, sounds, PowerPoint, flash, etc. It can also be seamlessly linked
with external applications.

3.1.10 Survey Module
The survey module supports built-in surveys with graphs and spreadsheets that can be posted on a
web-page. The module also provides feedbacks to students once completed. This module is not
integrated into the unicron.

7

3.1.11 Workshop Module
This module serves as an assessment tool wherein peers can assess documents and teachers can
grade their assessed documents. It supports a wide range of grading scales such as the likart scale.
This module is not integrated into the unicron.

3.2 Working with the Moodle Interface

This section deals with adding a course from the instructor’s point of view and course navigation
from the student’s side using the moodle web interface.

3.2.1 Adding a course in Moodle- Teacher’s Guide
Teachers can create online courses with moodle. The teacher logs in via the web with the teacher
account assigned by the administrator. Under the administration icon on the course home page, the
option setting allows the teacher to change the course settings ranging from its name to what day it
starts.
Under the settings option the course format will help the teacher to use the basic layout of the
course like a template. Moodle supports three formats: weekly format, topics format and social
format. Weekly format covers lectures exactly for one week whereas the topic format covers any
topic the teacher likes. The social format is based around just one forum which is displayed on the
main page and does not use much content.
Moodle also supports uploading all kinds of files such as web pages, audio files, video files, word
documents, etc. This can be done through the Files link under the administration icon. All the
uploaded files are stored on the server and these files can be moved, renamed, deleted or edited.
These files are accessible to the teachers alone and are made available to the students later. The files
are organized into sub-directories for easy and convenient accessibility. In the current moodle, only
one file can be uploaded at a time through the web interface. In order to upload more than one file,
a zip program can be used to compress and group the files into an archive file which can then be
uploaded.

In the main course page, the teacher can add all the course activity modules in the order that
students will access them. The standard course activities included are assignment, choice, forum,
resource, quiz and survey. In order to add a new activity the teacher has to go into one of the format
sections explained above and select the type of activity from the pop-up menu.

3.2.2 Course Navigation- Student’s Guide
The student has to first access the course website using the site address provided by the teacher. If
the student is accessing the course website for the first time, he has to start by first creating a new
account. The new account created will give the student access to all the courses. Individual courses
may require a once only enrollment key to access them.

The procedure to create a new account starts with the student clicking on “Start now by creating a
new account” button in www.moodle.org page followed by filling out the new account form and
creating a username and password. A confirmation email containing a web link will be sent to the
email address provided by the student. The student account will be confirmed once the student
clicks on the web link provided in the email. He can now see all the available courses and can select
the course that he wants to enroll. When a student tries to enroll into a course for the first time, he

8

http://www.moodle.org/

will be prompted for the enrollment key which will later be used by this student to enter the
respective courses.
Once the student enters the course he can navigate through the various pages using the course
activity modules.

3.3 Installing Moodle on Linux
Moodle is primarily developed in Linux using Apache, MySQL and PHP [moodle]. It requires

1. Web server software. It works under any web server that supports PHP, such as IIS on
Windows platforms.

2. PHP scripting language (version 4.1.0 or later).

3. a working database server such as MySQL

Moodle can be installed by downloading and copying the files into the main web server documents
directory. The install script is then run to create config.php which can be done by accessing the
Moodle main URL using a web browser or by accessing http://yourserver/install.php directly. The
web server is set up to use index.php as a default page. This is done by using a DirectoryIndex
parameter in the httpd.conf file in Apache. Moodle requires a number of PHP settings to be active
in order for it to work. On most servers these will already be the default settings.

Creating a database called moodle
An empty database is created in the database system along with a special user that has access to the
database and is granted administrative privileges.

Some examples for Unix command lines for MySQL are:
 # mysql -u root -p
 > CREATE DATABASE moodle;
 > GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER ON
moodle.*
 TO moodleuser@localhost IDENTIFIED BY 'yourpassword';
 > quit

Creating a data directory called moodledata
A data directory is created by the moodle installer that needs some space on the server’s hard disk
to store uploaded files such as documents and user pictures. This can be done manually if it fails.

Configuration
When the admin page is accessed for the first time, a GPL agreement is provided that must be
agreed upon by the user to continue with the setup. Moodle will then set up the database and create
tables to store data, followed by a number of SQL statements and status messages. It then allows
the users to define the parameters for the Moodle site. The final step is to create top-level
administration user to the admin pages. The admin then can perform tasks such as creation and
deletion of courses, creation and editing of user accounts (student and teacher accounts), etc.

9

Set up cron
Moodle modules sometimes require continual checks to perform tasks. The admin directory
contains a script called cron.php that does the continual checks. These checks cannot run by
themselves and need a setup mechanism wherein the script is run at regular intervals. This setup
mechanism is known as the cron service.

Using the crontab program on Unix
All that Cpanel does is provide a web interface to a Unix utility known as crontab.
Type the following in the command line
crontab -e
and then add one of the below commands using any editor tool:
*/5 * * * * wget -q -O /dev/null http://example.com/moodle/admin/cron.php

3.4 Configuring unixODBC

The following section helps in configuring unixODBC on the client side.

Fetching ODBC driver
The unixODBC source distribution is available at www.unixodbc.org, a gzipped tar file which is
uncompressed using the gunzip command and then the resultant file is untarred using the unix tar
(tape archive retrieval) [Easysoft].
For example
gunzip unixODBC-2.2.12.tar.gz
tar -xvf unixODBC-2.2.12.tar
Change into the resultant directory and run:
. /configure --help

Installing ODBC driver
Installing ODBC driver can be done three different ways. First Method is by writing a program
which links with libodbcinst.so and calls SQLInstallDriver. Second Method is by creating an
ODBC driver template file and running odbcinst. For example, odbcinst -f
template_file -d –I, where the template file must contain the Driver and Description
attributes. Third method is by editing the odbcinst.ini file and adding the driver definition. Each
driver definition in the odbcinst.ini begins with the driver name in square brackets which is
followed by Driver and Setup attributes. Driver is the path to the ODBC driver shared object and
Setup is the path to the ODBC driver setup library
In unixODBC ODBC drivers are defined in the odbcinst.ini file.

File DSN's
ODBC has a file DSN that stores the connection information in a file saved on to a central server
that is accessible to all the workstations.
Configuring a MyODBC DSN on *nix.

odbcinst.ini
This contains a section heading that provides a name for the driver. The Driver and Setup paths
point to the ODBC driver and setup libs.

10

The template for odbcinst.ini is:
[MySQL]
Description = ODBC Driver for MySQL
Driver = /usr/lib/unixODBC/libmyodbc3.so
Setup = /usr/lib/unixODBC/libodbcmyS.so
FileUsage = 1
CPTimeout =
CPReuse =
UsageCount = 2

[.]odbc.ini
The contents of the odbc.ini files follow just the same format as the odbcinst.ini entries.
The template for odbc.ini is:
[mydsn]
Description = MySQL database moodle
Driver = MySQL
SERVER = cve.cs.nmsu.edu
DATABASE = moodle
PORT = 3306
Socket =
Option =
Stmt =
USER = <username in mysql>
password = <password for the above user in mysql>
Trace = 1
TraceFile = error.log

The template for odbc.ini in /etc/unixODBC/odbc.ini is:
 [mydsn]
Description = MySQL database moodle
Driver = MySQL
Server = cve.cs.nmsu.edu
Database = moodle
Port = 3306
Socket =
Option =
Stmt =
USER = <username in mysql>
password = <password for the above user in mysql>

Parameter Default Value Comment

Server Localhost The hostname of the MySQL server.

Database The default database.

11

Option 0 Options that specify how MyODBC
should work. See below.

Port 3306 The TCP/IP port to use if server is not
localhost.

Stmt A statement to execute when connecting
to MySQL.

Password The password for the user account on
server.

Socket The Unix socket file or Windows named
pipe to connect to if server is localhost

Establishing a Remote Connection to Server from System A
Server side:

• Start the MySQL server.
• Use grant to set up an account with a username and a password of the user who can

connect from system B
 GRANT ALL ON *.* to 'myuser'@'A' IDENTIFIED BY 'mypassword';
• The GRANT statement grants all privileges to user myuser for connecting from

system A using the password mypassword. To execute this statement, root privileges
are required on system A.

System A side:
Configure a MyODBC DSN using the following connection parameters:

• DSN = remote_test
• SERVER or HOST = A (or IP address of system A)
• DATABASE = test
• USER = myuser
• PASSWORD = mypassword.

4. Requirements

This section discusses about the functional requirements and the non-functional requirements.
Certain features are taken from moodle design and integrated into unicron which allows integration
of courseware support to the CVE. These features include addition of assignment submission,
display of lecture notes and assignment description posted for a particular course. Also display the
forums or posts posted to a particular course in the unicron. Chat module from moodle is not
integrated into unicron, since it is already a part of unicron mode of communication. To keep track
of student’s activity, all the client information is logged including chat information.

4.1. Functional Requirements
View Students information
User: Student
Description: View list of courses enrolled by the user. The following details will be visible

12

• Individual Name
• The course list
• The instructor’s name for the course
• The instructor’s email address for the course

Dependencies/Constraints: None

View Courses Enrolled
User: Student
Description: A list of all possible courses the student is enrolled. The following details will also be
visible

• The course Name
• The Lectures posted for the course
• The assignments posted for that course
• All the postings for the course

Dependencies/Constraints: None

View Assignments for a course
User: Student
Description: A list of all the assignments posted for a course. The following details will also be visi­
ble

• The name of the assignment
• Complete information of the assignment
• Due date for the assignment
• The time of posting of the assignment
• The time of last submission by the user
• A dialogue box for uploading the assignment

Dependencies/Constraints: If the due date for the assignment is over, no submission is possible for
that particular assignment. The dialogue box for uploading the assignment will not be shown to the
user.

Select Lecture Topic
User: Student
Description: Students may select topic from a dropdown list

• Complete information of the Lecture notes selected by the user
Dependencies/Constraints: None

4.2 Non-Functional Requirements

This section includes the hardware and software constraints.

4.2.1 Hardware Constraints and specification
The hardware constraints and specifications on the server side include a minimum hardware support
to host Unicron and Moodle. On the user side, any computer system that can run Unicron and a net­
work connection, in case the unicron server or moodle database are hosted remotely

4.2.2 Software Requirements

13

To run unicron on the server side, the system should include unicron server and a mysql database
server. The unicron server and mysql database server need not be on the same machine. This project
was tested on Linux platform, and is recommended to run on Linux platform, till further testing is
done on other platforms like Windows, or any other operating system that Unicron supports.
On the Client side, Linux operating system is recommended with unicron client installed on it.
Client side should contain MyODBC-unixODBC package for Unicron-moodle communication.

5. Design

The main goal of this project is to integrate the features of moodle into unicron. This is achieved by
providing a thin layer between Sql and the cve. The connection between the cve and the database is
created in the class moodle. To provide course management the above connection helps in
executing the sql operations between the cve and the database. The course management is mainly
focused in displaying the lecture information, assignment description, assignment submission,
logging chat information and user activity. The implementation details of the above mentioned class
is discussed in the later section.

When a user logs in, apart from creating a virtual environment, a connection is made to the MySQL
database from the client side to retrieve the courses the user is enrolled to. The CVE displays the
course information like the assignments, lecture notes and posting. The user can also submit the
assignments from the Virtual Environment.

In order to achieve the goal of this project, the design should involve developing a unified, intuitive
and single application that would make use of collaborative virtual environment features and
moodle. The developed interface should be clearly organized and easy to navigate. To provide this
kind of interface, a new sub window is added along with the virtual environment, which would
represent the courses that the user enrolled into.

To display the course information a new tab is created at runtime by the class CourseTabItem. This
class is called from the nshdialog class which deals with the user interface.

The below figure is a UML diagram showing the inheritance of the classes used in this project.

14

TabItem

…..

…..

Moodle

…..

…..

NSHDialog

…..
….

…..
…..

Dialog

World

…..

…..

CourseTabItem

…..

…..

Figure 1: UML Diagram

Moodle Database Structure
• Every table has an auto-incrementing id field (INT10) as primary index.
• The main table containing instances of each module has the same name as the module.
• Following are the minimum fields contained in the main table:

id - as described above
course - the id of the course that each instance belongs to
name - the full name of each instance of the module

• Other associated tables with a module that contain information are named as school_info
(example, mdl_user_students)

• Simple and short column names are used.
• Columns that contain a reference to the id field of another table (eg widget) are called as

widgetid.
• Boolean fields are implemented as small integer fields (eg INT4).
• Most tables have a time modified field (INT10) which is updated with a current

timestamp obtained with the PHP time () function.

There are 132 tables in the moodle database. The main twelve tables are mdl_config,
mdl_course,mdl_course_categories,mdl_course_modules, mdl_course_sections, mdl_log,
mdl_log_display,mdl_modules,mdl_user,mdl_user_admins,mdl_user_students,mdl_user_teachers.
These tables are called as the meta-tables. The other tables are listed in the appendix section of this

15

document. The tables that are used in this project are listed below: mdl_user, mdl_course,
mdl_resource, mdl_forum, mdl_user_students, mdl_assignment, mdl_assignment_submissions,
mdl_log, mdl_chat_messages, mdl_chat_users and mdl_user_teachers.

The mdl_course table has 32 fields of which only a few are used, the rest
of them are for future use. This table is a read-only table which is used to
retrieve the course enrolled by the student and for the information
pertaining to a course which is displayed in the cve. The fields used read
from the cve are id, fullname, shortname and summary. The id is an auto
increment field and is used as the primary key. It is of type unsigned int
and ranges between 0 and 10.Fullname is the name of the course which is
of type varchar, the maximum size of it is 254 characters and cannot be
null. The shortname is the call number of the course of type varchar, the
maximum size of it is 15 characters and cannot be null. The summary is
the description of the course which is of type text and this field can hold
data up to 4 GB and cannot be null.

The fields of this table are written from the cve, it logs the user activity
from the cve. The fields that are written to mdl_log table are id, time,
userid, ip, course and action. The id is an auto increment field and is used
as the primary key. It is of type unsigned int and ranges between 0 and 10.
The time represents the time at which a particular action was performed by
the user. It is of type unsigned int and ranges from 0 to 10. It stores the
epoch time and the default value is 0. The userid is the id of the user who
performs the action and is of type unsigned int. The values range from 0 to
10 and default value is 0. The IP represents the IP address of the client
machine where a particular action was performed and is of type varchar
with a maximum size of 15 characters. It cannot be null.

16

The fields of this table are written from the cve, this records the chat
messages send from the user in the cve. The fields that are written to
mdl_chat_messages table are id, userid, chatid, message and timestamp.
The id is an auto increment field and is used as the primary key. It is of
type unsigned int and ranges between 0 and 10. The timestamp represents
the time at which a particular message was sent by the user which is of type
unsigned int. It stores the epoch time with values ranging from 0 to 10 and
default value being 0. The userid is the id of the user who performs the
action and is of type unsigned int. The values range from 0 to 10 and
default value is 0. The chatid represents the chat id of the user which is
different from the userid. It is of type int with values ranging from 0 to 10
and the default value being 0. Message is of type text which stores the
conversation of a particular user.

.

This table is a read-only table which is used to keep track of the users who
want to communicate with the others. The fields used from
mdl_chat_users table are id, userid, chatid and ip. The id is an auto
increment field and is used as the primary key. It is of type unsigned int
and ranges between 0 and 10. The userid is the id of the user who
performs the action and is of type unsigned int. The values range from 0 to
10 and default value is 0. . The chatid represents the chat id of the user
which is different from the userid. It is of type int with values ranging
from 0 to 10 and the default value being 0. The IP represents the IP
address of the client machine where a particular action was performed and
is of type varchar with a maximum size of 15 characters. It cannot be null.

This table is a read-only
table which is used to

retrieve the assignment information when an assignment is selected. It displays the
description of the assignment selected. The fields used from mdl_assignment table are
id, course, name, description, timedue, timeavailable, preventlate, timemodified and
resubmit. The id is an auto increment field and is used as the primary key. It is of type
unsigned int and ranges between 0 and 10. Course represents the course id number of
type unsigned int with values ranging from 0 to 10 and the default value being 0.
Name is the name of the course of type varchar having a maximum size of 255
characters and cannot be null. Timedue represents the time when the assignment is
due and is of type unsigned int with values ranging from 0 to 10, the default value
being 0. The timeavailable represents the time when the assignment is available and is
of type unsigned int. Timemodified represents the time when the assignment was last
modified and is of type unsigned int with values ranging from 0 to 10, the default
value being 0. The preventlate field does not allow late submissions. It is of type
unsigned tinyint with values ranging from 0 to 2, the default value being 0. The
resubmit field is of type unsigned tinyint of maximum size 2 and a default value of 0.
This decides whether resubmission is possible for a particular assignment.

17

This table is a read-only table which is used to retrieve the resource files
for a particular course and displays the description of the resource in the
course tab of the cve. The fields used from mdl_resource table are id,
course, name and alltext. . The id is an auto increment field and is used as
the primary key. It is of type unsigned int and ranges between 0 and 10.
Course represents the course id number of type unsigned int with values
ranging from 0 to 10 and the default value being 0. Name is the name of the
course of type varchar having a maximum size of 255 characters and
cannot be null. Alltext represents the contents of the lecture notes and is of
type text.

This table is a read-only table which is used to retrieve the postings for a
particular course which is displayed in the course tab. The fields used from
mdl_form table are id, course and name. The id is an auto increment field
and is used as the primary key. It is of type unsigned int and ranges
between 0 and 10. Course represents the course id number of type unsigned
int with values ranging from 0 to 10 and the default value being 0. Name is
the name of the course of type varchar having a maximum size of 255
characters and cannot be null.

The fields of this table are written from the cve, this allows the
student to submit their assignments from the cve. The fields that are
written to mdl_assignment_submissions table are id, assignment,
userid, timemodified, data1 and filename. The id is an auto
increment field and is used as the primary key. It is of type
unsigned int and ranges between 0 and 10. Assignment represents
the assignment id number which is of type unsigned int. The values
range from 0 to 10 with default value being 0. Timemodified
represents the time when the assignment was last modified and is of
type unsigned int with values ranging from 0 to 10, the default
value being 0. data1 is of type longblob which stores the content of
the submission.

6. Implementation

18

This section discusses the implementation of integration of moodle features into the unicron. In
order to integrate courseware support into Unicron, user interface was changed accordingly to
reflect the integration of moodle. Two new classes, Moodle and CourseTabItem were included. The
gui screen shots are shown under Graphical Output section. The gui additions include addition of a
course tab item and a course-user information section which gets created at run time. The created
course tab item displays the lectures and assignments, if any pertains to the course selected by the
student. Some methods were added into few existing classes and two new classes were added in
order to get moodle integrated into Unicron, and are mentioned in the section below.

6.1. Moodle.icn
The moodle.icn file is present in unicron/src/client. This is a new class added into unicron. An
object of this class is instantiated in nshworld.icn, which establishes a database connection between
unicron and moodle. The Moodle class contains the following attributes and methods.

Attributes

1. uid: The uid defines the username of the person who wishes to connect to the Moodle
database.

2. pwd : The pwd defines the password of the person who wishes to connect to the
Moodle database. The password is stored as a binary string of 32 bit hexadecimal digits,
using MD5 (Message digest algorithm)

3. moodle_db: Holds special handler to the Moodle database and can be used to perform
file and table operations.

Methods

The Moodle class has three methods. They are

1. initialize_moodle (uID, Pwd): This method opens a database connection and returns a
special handler. The input parameters for this method are username and password.

2. return_moodle_conn (): This method returns the special handler which is created during
the open command of the database.

3. initially (uID, Pwd): This is the constructor method of the Moodle class. It sets up the
database connection using the username and password provided during the instantiation
of the moodle class.

• uID username to access the moodle database.
• Pwd password to authenticate to the moodle database.

In order to authenticate a user, she must provide a username and password. Proper permissions
should be provided to the user to access the Moodle database.

The Moodle class helps in establishing connection between the moodle database and the unicron
server/client. In order to establish a connection, a username and password must be provided. This is

19

done through the instantiation of the class moodle. The provided values are used to open a
connection by using the following unicon statement.

Moodle_db:= open (“cve”, “o”,”moodle”, uID, Pwd)
The return value of the open () is a special handler which can be accessed through the method
return_moodle_conn (). The special handler is required to perform database operations.
Moodle makes use of unicon odbc connectivity in order to connect to the database. An entry must
be present in the .odbc.ini file under the user home directory. If an entry is not found, then an entry
is added with appropriate field set.

6.2. nsh-world.icn
This is an existing class present at unicron/src/client. This creates a virtual environment for the
nmsu science hall. In order to incorporate moodle functionality into the world class, a moodle
object (Moodle.icn) is created, which contains a reference to the moodle database. The object
creation is done in setMoodle (uid, pwd) method. The parameters passed to this method are
obtained from the login dialog of the unicron client from nsh.icn.

6.3. CourseTabItem.icn
This class helps in creating gui elements required to display course support at runtime. It is present
at unicron/src/client. All the gui elements like labels, textlist, editable textlist, separators and
buttons required to display lectures, assignments and labels which provide information for a course
selected are created in this class. Method SetContent sets up the gui elements at runtime. The gui of
the course selection tab item can be seen in figure 3.

6.4. nshdlg.icn
This is an existing class present at unicron/src/client. This class hosts the user interface of the
virtual environment and has the most modification to incorporate moodle into Unicron. Few
methods were added into nshdlg.icn, which include

WritetoDB : This method executes the SQL queries. It checks if there is a connection established
with the moodle database each time a sql query is executed. If it fails then it would display an error
message.
 sql (C, sqlstmt) | write_to_chat_win (“Error executing sql query”)
In the above sql statement, the world.moodle.return_moodle_conn () is the connection
to the database which can be abbreviated as c.

DisplayUsername: This method displays the username of the user who logged in, is fetched from
the table mdl_user from the moodle database and is displayed on the course panel. If a user does not
have an entry in the moodle database, it displays a default string called “Username”.

sql(C, "select id, firstname, lastname from mdl_user where
 username='" || world.moodle.uid ||"'")
where id is the userid
firstname is the firstname of the user who logs in
lastname is the lastname of the user who logs in
world.moodle.uid is the username provided during the login setup

20

ClientUserActivity: This method writes the login information of the user who is logged into the
moodle database under mdl_log table. The log table information consists of the userid of the user
who logs in, IP address of the client machine, time of login and the action string, which is by
default “Logged In”.

sql(C, "insert into mdl_log (userid, ip, time, action) values
 (" || userID_mdl || ",'" || clientIP || "'," || &now || ",'Logged in') ")

Where userid is the id of the user obtained from userID_mdl
ip is the IP address of the client machine obtained from clientIP
time is the time when the user logs-in obtained from &now
action is the action performed by the user like login.

on_label_1: This method allows the user is able to open a web browser by clicking the link in the
course tab ‘click here to check your grades’ which points to www.moodle.org where he can check
his grades online from the moodle web-interface. In the method, the system command launches the
execution of firefox, a web browser which points to the URL www.moodle.org

 system ("firefox "|| "www.moodle.org")

on_exit: This methos inserts an entry into the mdl_log table when the user logs out. The log
information contains the last course number the user viewed, userid of the user who logs in, IP
address of the client machine, time of logout and the action string which is by default, “Logged
Out”.

sql(C,"select id from mdl_course where shortname='" || s || "'")
Where, id is the course id of the course.
shortname is the short code of the course.

sql(C,"select id from mdl_user where username= '"||world.moodle.uid ||"' and
password=MD5 ('"|| world.moodle.pwd ||"')")
Where, world.moodle.uid is the username provided during the login setup.
world.moodle.pwd is the password provided during the login setup.

sql(C,"insert into mdl_log (userid, course, ip, time, action) values (" || s1 ||
"," || s2 || ",'" || clientIP || "',"||&now||", 'Logged Out')")
Where, id is the user id.
course is the course id number.
ip is the IP address of the client machine obtained from clientIP.
time is the time when the user logs-in obtained from &now.
action is the action performed by the user which is a message.

 The first statement retrieves the course id from the mdl_course table by comparing the course’s
shortname. The second statement retrieves the id of the user from mdl_user table by comparing the
username and password provided during the login process. The password is stored in MD5
checksum format in the mdl_user table. The third statement makes use of the information obtained
from the above two sql statements and adds an entry into mdl_log table along with the IP address
acquired by the clientIP, the time at which the user logs out which is obtained by &now, which

21

produces the current time and the action which is a message “logged out” when an user logs out of
the CVE.

on_chat: This method records all the chat messages for later use in the mdl_chat_messages table.
Every user has their own chatid and groupid which is different from the userid, which is fetched
from the mdl_chat_users. The log information which gets stored into the mdl_chat_messages table
contains chatid, userid, groupid, message and the timestamp when the message was sent. If a user
does not have moodle access, the messages sent by the user are not recorded in the
mdl_chat_messages table but the user can communicate between their peers.

sql(C, "select chatid, groupid from mdl_chat_users where userid=" || userID_mdl
insert into mdl_chat_messages (chatid,groupid, userid, message, timestamp)
values ("||chatID||","||groupID||","||userID_mdl||",'"||input_line||"'," || &now
||")")

where chatid is the id for the chat session obtained from chatID
groupid is the id of the group to which the user belongs to obtained by groupID
userid is the user id obtained from userID_mdl
message is the message sent by the user to communicate.
timestamp is the time when the user send the message obtained from &now
userID is the username provided during the login setup

Here, the chat messages sent by the users are logged in the database by inserting the chatid,
groupid, userid, message and the timestamp into the mdl_chat_messages table. The values of chatid
and groupid are fetched from the table mdl_chat_users by comparing the userid of the user who is
communicating. The messages are the chat messages that are sent across the network through the
chat window and the time of the message sent is obtained by the &now which returns the current
time.

on_assignment: This method is called upon selection of the course number by the student, a new
tab is created during runtime which contains an assignment list, a lecture list and a forum list. These
different lists display the assignments, lecture notes and new postings pertaining to the course
selected by the student. When the student tries to check on any of the assignments pertaining to a
course, then the description of the assignment is displayed in textbox in the course tab. The
description of an assignment is displayed to the user when an assignment is selected which is
obtained from mdl_assignment table. The description is retrieved from the database by comparing
the name of the assignment in the assignment list.

sql(C,"select description from mdl_assignment where name='"|| s || "'")

where description is the assignment/lab posted for a course; name is the course number

on_courses_btn: This method allows the user click on the courses button in the course panel in the
CVE which lists the courses enrolled by the student. In order to achieve this task, the user id is
obtained from mdl_user table, which forms the criteria to get the list of courses enrolled by the
student from the table mdl_user_students.

22

sql(C,"select id from mdl_user where username='" || world.userId || "'")
sql(C,"select course from mdl_user_students where userid = '" || n || "'")
sql(C,"select shortname from mdl_course where id='"|| L[i] || "'")

where id is the userid of the user who logs in.
world.userId is the username provided during the login setup
course is the course number of the courses.
username is the name of the user obtained from world.userId
shortname is the shortname of the course

The first sql statement retrieves the id of the user from mdl_user table by comparing the username.
The userid obtained above retrieves the courses from the mdl_user_students table. The third
statement makes use of the course id obtained to fetch the shortname of the course which is
displayed on the course list.

repeat1: This method logs in the user activity such as clicking on courselist, etc into the mdl_log
table. The log information contains the last course number the user viewed, userid of the user who
logs in, IP address of the client machine, time of action and the action string “Course List”.
The method has two parameters, id and msg where id is the userid and msg is the message sent by
the user across the network.

sql(C,"select id from mdl_user where username='"||world.moodle.uid||"' and
password=MD5('"|| world.moodle.pwd ||"')")
sql(C,"insert into mdl_log (userid, course, ip, action, time) values (" || s1 ||
"," || id || ",'" || clientIP || "','"|| msg ||"',"|| &now||");")

where userid is the id of the user obtained from mdl_user
course is the course number on which the student performed some task
ip is the IP address of the client machine obtained from clientIP
time is the time when the user logs-in obtained from &now
action is the action performed by the user which is a message.
world.moodle.uid is the username provided during the login setup
world.moodle.pwd is the password provided during the login setup.

 The first statement retrieves the id of the user from mdl_user table by comparing the username and
password provided during the login process. The password is stored in MD5 checksum format in
the mdl_user table. The second statement makes use of the information obtained from the above sql
statements and adds an entry into mdl_log table along with the IP address acquired by the clientIP,
the time at which the user does some task obtained by &now, which produces the current time and
the action which is a message “Course List” when an user tries to access the courseware support in
the CVE.

upload_file: This method allows a selected file to be uploaded to the moodle database. In order to
upload a file into moodle first a file dialog box pops up which allows the user to browse through the
file system and select a file. Upon selection of the file, the assignment number, the userid of the
user who is submitting the homework, the filename, the content of the file, the time when the last
submission was made by the user and the number of files that a user submitted for a particular

23

assignment is stored into the moodle database. The decision of whether the user can resubmit the
homework or have a deadline for any particular homework is made by the instructor through the
moodle internet interface where he first uploads the assignment. Hence the user is allowed to
resubmit homework files for the same assignment or he is not allowed to submit an assignment after
the deadline.

sql(C,"select id from mdl_user where username='"||world.moodle.uid||"' and
password=MD5 ('"|| world.moodle.pwd ||"')")
sql(C,"select id from mdl_assignment where name='"||s1||"'")

sql(C, "insert into mdl_assignment_submissions (assignment, userid, filename,
data1, timemodified, numfiles) values ('"|| s3 ||"',"|| s2||", '"||filename||"',
"||s||"," || fs.mtime ||"," || numfiles ||");")

where username is the name provided by the user during the login setup obtained from
world.moodle.uid
password is the authentication code provided by the user during the login setup obtained from
world.moodle.pwd
id is the assignment id number.
userid is the id of the user who is submitting the assignment.
Filename is the name of the file along with the fullpathname.
Data1 is the content of the file
Timemodified is the last time a file is submitted by the user
Numfiles represents the number of files submitted for an assignment

 on_lect_notelist: This method allows, upon the selection of the course into which a user has
enrolled, a new tab is created on the main section of the client window which contains the list of
lectures, assignment and forum posts for that particular course. Upon selection of the lectures from
the lecture list, a detailed description about the lecture is displayed to the user. The lecture notes are
saved in the database under mdl_resource. New lectures for a course can be added through the
moodle web interface.
A lecture list can be either saved into the database or uploaded as a file. When a lecture note is
uploaded as a file, its relative path is saved into the database with reference to file upload directory
which is /srv/www/htdocs/moodledata/. If a lecture is saved into the database, it is written into
mdl_resource.

sql(C,"select mdl_resource.alltext from mdl_resource, mdl_course where
mdl_resource.name='"||s ||"' and mdl_course.shortname = '" || CurrentTabItem ()
.label || "'")
sql(C, "select course from mdl_resource where name='" ||s || "'")
sql(C,"select reference from mdl_resource where name='" ||s || "'")
sql(C,"select summary from mdl_resource where name='" ||s || "'")

Where, the summary is the content of the lecture selected
 mdl_course.shortname is the shortname for a course
 mdl_resource.alltext is the name of the lectures

24

on_courselist: This method allows the user to view the course page in the CVE he selects the
course number from the dropdown list which shows the courses he is enrolled in with the lecture
notes, assignments, forum list. It also displays the instructor information like name and email
address. The user activity of navigating the course tab is logged into the mdl_log table. The log
information contains the last course the user navigated in the CVE, the userid of the user who logs
in, IP address of the client machine, time of navigation and the action string which is by default,
“CourseList”.

sql(C, "select * from mdl_user_teachers where course=" || s)
sql(C, "select * from mdl_user where id=" || teacherid)
sql(C, "select distinct name from mdl_assignment where course='" || s || "'")
sql(C,"select distinct name from mdl_resource where course='" || s || "'")
sql(C,"select name from mdl_forum where course='" || s || "'")
sql(C, "select id from mdl_course where shortname='" || s || "'")
sql(C, "select id from mdl_user where username='"||world.moodle.uid||"' and
password=MD5 ('"|| world.moodle.pwd ||"')")
sql(C, "insert into mdl_log (userid, course, ip, action, time) values (" || s1
|| "," || s || ",'" || clientIP || "','"|| msg ||"',"|| &now||");")

where id is the teacher id of the course in the first sql statement
shortname is the short description/code of the course
id is the user obtained from world.moodle.uid
ip is the IP address of the client machine obtained from clientIP
time is the time when the user logs-in obtained from &now
action is the action performed by the user which is a message.
world.moodle.uid is the username provided during the login setup
world.moodle.pwd is the password provided during the login setup.

Here, the user has an option of selecting the course he wants to navigate by selecting the course
from the dropdown list. Once the course is selected, the teacher’s name and email address
pertaining to that course is retrieved from the mdl_user_teachers table. It also retrieves the
assignment distinct name, lecture names and name of the posting for that course from
mdl_assignment, mdl_resource and mdl_forum tables. The id of the user from mdl_user table is
retrieved by comparing the username and password provided during the login process. The
password is stored in MD5 checksum format in the mdl_user table. The activity of course
navigation by the user is entered into the mdl_log table along with the IP address acquired by the
clientIP, the time at which the user navigates obtained by &now and the action which is a message.

fetchIP: This method grabs the IP address for the client machine. The clientIP is required in order
to record the log information which is obtained from the server side. Though the IP can be obtained
from the client side, it’s not done so due various factors like firewall, NAT or the client might
masquerade an IP. In order to fetch the client IP, a message is sent from the client to the server
requesting for the client IP. Upon the receipt of the request on the server side, the server sends back
the client it’s IP.

25

Figure 1: Client requesting the server for IP address

SetContentTab: This method calls the method setcontents in CourseTabItem,and passes
parameters that contain the text to be displayed to the user. It also sets the events for the gui
elements present in coursetabitem like SELECTION_CHANGED_EVENT,
MOUSE_PRESS_EVENT, ACTION_EVENT.

7. Graphical Outputs

Below are a few screen shots from Unicron with courseware support.

Fetchip:
{ sendtoOne(sock,getIP(sock
), 吐etchip�sock)

Client gets it’s IP
stored in clientIP
class variable

session.write(\\fetchip
|| world.userId)

Server sends client its IP address

Client request server for its IP
ServerClient

26

file://fetchip/

NMSU Science Hall 3D-View

Figure 1: NMSU Science Hall 3D-View with moodle courseware support

The user is assigned a username and password to login into the NMSU virtual community. The user
may not have access to a set of features like course support. The above screen shot represents the
NMSU virtual CS department as seen from SH 118b classroom. It displays the courses in which the
user is enrolled, showing some of the integration of unicron with moodle.

27

Figure 2: The course page with course details

The above figure shows the lectures, assignments and forum posts for the selected course. It also
displays the instructor details like name and email address, if the user has to contact them.

28

Figure 3: The Lecture Notes displayed in the course tab.

In the above picture, upon selection for a lecture for a particular course, lecture notes are displayed
to the user

29

Figure 4: The Assignment Details displayed along with the due time, posted time and the last
submitted time

In the above figure, upon selection of an assignment for a particular course, the problem statement
is displayed to the user. The due time for the assignment and the posted time of the assignment are
also displayed. The last assignment submitted is also displayed to the user.

30

Figure 5: User viewing two courses from the CVE.

If more than one course is selected by the user, a new tab is opened for each course. When a user
has to submit an assignment, upon clicking the submit button a file upload dialog box is shown
which allows the user to select the file to be uploaded.

8. Related work

Virtual environments like Unicron, Croquet help in creating a collaborative virtual space for the
user. These help in teacher-teacher and student-teacher peer communication. Environment such as

31

Unicron with integrated moodle features are related to the collaborative learning environment
which is designed to facilitate the teachers in the field of course management for their students.

Future Learning Environment and Croquet are collaborative virtual environments which are used in
the field of education. Future Learning Environment (Fle3) is software for computer supported
collaborative learning (CSCL) [Leinonen]. Fle3 is server software for computer supported
collaborative learning, designed for group activities supporting creation and development of
knowledge artifacts. Knowledge production is the main idea behind CSCL, this can be obtained by
making use of advanced computer tools and creating a peer network among the members of the
community which includes both teachers and students.

In most of the CSCL applications the knowledge production takes place in a shared working space
where students add to the database their knowledge products and carry out progressive discourse
interaction. Fle3 can be used just with a single PC computer. Each user may login to the system
with their own user name and password and work with the Fle3, rotating the use of the computer.
Fle3 users, teachers and students, can use Fle3 with standard web browsers. Fle3 is designed to
work with every web browser on every operating system and is also usable with standard web
browsers in hand held computers and mobile phones (e.g. Nokia Communicator). Fle3 is easy to
localize to different languages and it currently supports twelve languages.

Croquet provides resource sharing and collaboration among users, with the help of open source
software with network architecture [Croquet]. It defines a skeleton for delivering constant, scalable
and extensible interface to network delivered resources. Croquet allows knowledge sharing, co-
creativity and social presence among the users with the help of 2D and 3D interface.

In a 3D architecture, the users can create and publish their own resources. Any number of private or
shared worlds can be created by the users and can be made accessible for others by providing
spatial portals. The users can also enjoy telepresence with one another. It supports real-time
interactions that support a self-organizing, interdisciplinary knowledge-sharing system. Croquet
makes use of Open GL-based graphics engine and late binding scripting language to create private
or shared authorship of complex spaces and their contents. Croquet large scale networked
community allows naïve 3D developers to create shared open-source central repository for storage
and retrieval of all created and modified objects. It supports real-time viewing and manipulation of
all deliverable information resources across the network. Croquet provides scalable, persistent 3D
environment, which ensures that actions and behaviors of an infinite number of networked users are
simultaneously apparent to users across the environment.

9. Conclusion and Future Work

With the integration of Moodle features into unicron virtual collaborative environment, it is helpful
for a student to view the courses while being present virtually. The interaction between the
instructor and the student has been enhanced through the virtual environment by keeping track of
all the courses a student is enrolled into and allows the student to use the environment as an
internet-webpage for the course site where he/she can view the assignments, lectures and submit the
assignments

32

As the Collaborative Virtual Environment develops, it will influence more students and instructors
to use the environment for the purpose of education due to its single consistent and easily accessible
interface. Hence there is a need for extending the current environment to one which fully integrates
the features provided by the Moodle software and by the commonly used courseware tools.

The chat messages and user login information are currently being logged and kept track of in the
virtual environment. Work can be done to include profile pictures in the chat window and allow
support for smiles, images, etc. and also in allowing the student to check his grades, enroll for any
courses offered and solve quizzes from the virtual environment.

Partial integration of moodle has been done, the modules implemented involved few simple queries
like select, insert operations. The performance degradation of unicron with the mysql operations
was subtle.

Work can also be done in extending the virtual environment to support most of the features of the
Moodle software to make the student’s experience better with support to email while using the
virtual environment, and by building an online profile including photos and description. Few more
features can be added wherein the instructors can enroll/unenroll students manually, include
workshops, Quizzes, Choices and Surveys.

Though lot of work has been done from the student side integration of unicron, no or little work has
been done from the teacher point of view.

10. References

[Easysoft] Easysoft Limited. (2006). Linux/UNIX ODBC. Retrieved December 25, 2005, from
http://www.easysoft.com/developer/interfaces/odbc/linux.html

[Leinonen] Leinonen, T., & Kligyte, G. (2002). Future learning environment for collaborative
knowledge building and design. Think Cycle. Retrieved December 25, 2005 from
http://www.uiuh.fi/~tleinone/leinonen_fle3_os.pdf

[Jeffery05] Jeffery, C., Dabholkar, A., Tachtevrenidis, K., Kim, Y. (2005). A Framework for
Prototyping Collaborative Virtual Environments. CRIWG, Retrieved December 21, 2005 from
http://www.cs.nmsu.edu/~jeffery/vcsc/vcsc.pdf

[Jeffery03] Jeffery, C., Mohamed, S., Pereda, R., and Parlett., R. (1993-2003). Programming with
Unicon. Retrived December 21, 2005 from http://unicon.sourceforge.net/book/ub.pdf, 2003.

[Balbi02] Jeffery, C., and Balbi, F. (28 June 2002). An ODBC interface for unicon programming
language. Unicon Technical Report #1b. Retrived December 21, 2005 from
http://unicon.org/utr/utr1/utr1.htm

 [Croquet] About Croquet. (2005) Retrieved December 29, 2005 from http://www.opencroquet.org/

33

http://www.opencroquet.org/
http://unicon.sourceforge.net/book/ub.pdf

[Guzdial] Guzdial, M. (2005). CaMILE: Collaborative and Multimedia Interactive Learning
Environment. Retrieved January 23, 2006, from College of Computing, Georgia Institute of
Technology Web site: http://www.cc.gatech.edu/gvu/edtech/CaMILE.html

[Churchill] Elizabeth, F., Churchill., David, S., & Alan, M., (2001). Collaborative Virtual
Environments: Digital Places and Spaces for Interaction. Springer-Verlang London Ltd
[moodle] Moodle documentation. (2006) Retrieved December 18, 2005 from
http://docs.moodle.org/

34

