
Building a Collaborative Virtual Environment:  

A Programming Language Codesign Approach

Jafar Al-Gharaibeh, Clinton Jeffery and Hani Bani-Salameh  

Computer Science Department 

University of Idaho 

Moscow, Idaho USA 

jafara@vandals.uidaho.edu, {jeffery, hani}@uidaho.edu 

 

 
Abstract— Developing 3D virtual environments requires an 

advanced level of programming expertise. In many cases, 

working on such an application involves a wide range of 

programming activities such as 3D graphics, networking, user 

interfaces and audio programming. At the same time, such 

applications are usually real time and performance critical. 

The complexity of developing such an application comes from 

two sources: first, the programming language used in 

development with its strengths and also the limitations it 

imposes. The second is the requirements of the virtual 

environment itself, with its dynamics and size. Some languages 

are more suitable than others for any given application 

domain, but in general once a programming language is 

selected, the main focus is the application itself and not the 

language used. This paper presents an approach where a 

virtual environment (CVE) and its implementation language 

(Unicon) evolved together over the course of the project 

development, derived from emerging functional and 

performance requirements.  The Unicon language was 

improved and new features were added over time to meet new 

demands and address the complexities that arose at the 

application level. This approach was combined with developing 

a framework to build virtual worlds with a social integrated 

development environment and to populate those worlds with 

non-player characters. 

Keywords-component; language design; cve; 3D models; 

social  IDE; object selection; language-application codesign 

I. INTRODUCTION 

Cyberworlds have a tremendous impact on the physical 
world. People are spending more and more time in virtual 
worlds and social media spaces. From entertainment through 
army and industry to education, cyberspaces have found uses 
in many diverse applications. Yet the cost and complexity of 
building virtual worlds remain a challenge in terms of the 
programming expertise required and long development time 
needed to build such worlds. Such resources are usually only 
available in big companies and large institutions. Graphics 
APIs such as OpenGL [10] enable the development of 
portable 3D applications. Such APIs are very large, complex 
and low level. Higher level Java3D is claimed to enable 
ordinary programmers to write 3D graphics, but the size and 
complexity of the API (150+ classes) contradicts that claim. 

The CVE project described in this paper was motivated 
initially by a goal to support distance education in a virtual 
world. The project expanded over the years to build a more 

general framework for rapid prototyping of virtual worlds, 
not just the geometry and appearance of the virtual space, but 
potentially extensive domain-specific behavior needed for 
virtual worlds to be adapted to new uses. The goal became to 
build an enabling technology and infrastructures that make 
the task of creating a virtual world something manageable by 
a small team with limited resources. 

A secondary goal is to learn lessons from building virtual 
worlds using an open source very high level programming 
language, where new capabilities and features can be built 
into the language. Such features can employ the very high 
level semantics and powerful data structures where the 
programmer does not have to learn enormous libraries to do 
tasks such as 3D graphics or networking. This approach 
hides a lot of the implementation details in many situations, 
removing the burden of such low-level details from the 
programmer and allowing the language to take care of them. 
Such low level details are usually one of the biggest factors 
hindering inexperienced programmers from undertaking 
virtual worlds implementations. With this in mind a new 
question arises: what features should a programming 
language have in order to make the task of building a virtual 
world something feasible even with a limited budget? 

The programming language used in this project is called 
Unicon; an object-oriented descendant of the Icon 
programming language [3, 4]. Icon integrates Prolog-like 
goal-direction and implicit backtracking within a 
conventional syntax and an imperative semantic core. Icon’s 
traditional domain is string and file processing, and the rapid 
development of experimental algorithms and data structures. 
Unicon is a superset that extends Icon along two dimensions: 
features such as classes and packages for larger-scale 
projects, and extensive access to modern I/O capabilities 
such as graphics, networking, and databases. Unicon is an 
open source project available at unicon.org. 

II. MOTIVATION 

The obvious way to build a new virtual world application 
is to use an existing virtual environment such as SecondLife, 
OpenSim, ActiveWorlds, or OpenCobalt, avoiding the 
construction costs which can easily run into the tens of 
millions of dollars[1]. However, at the onset of this project it 
was realized that the application domain requirements were 
substantially different from existing game-oriented virtual 
worlds. Adapting an existing gigantic codebase was rejected 



for this project because it was believed that this option would 
exceed the technical skill of the students involved. 

The popularity of hardware/software codesign suggests 
an under-utilized analog: language/application codesign. 
Programming languages are in fact much easier than 
hardware to codesign alongside the applications that run on 
them. In many cases this codesign occurs during the creation 
of a domain specific language, and there are conspicuous 
examples, such as operating system/language co-design [2]. 
As vendors of the very high level language Unicon, the 
project team decided to view the project as an opportunity to 
improve the language by means of language/application 
codesign. 

This approach extends a language virtual machine to 
serve as a game engine, instead of the more typical approach 
of embedding a scripting language on top of a more 
conventional game engine. 

III. PROGRAMMING LANGUAGE SUPPORT 

Unicon, like many other very high level languages such 
as Python and Ruby, provides very powerful data structures 
like lists, tables and sets that are very suitable for 
representing the virtual world state and data. In addition, 
high-level graphics and networking features are major 
emphases in Unicon's research agenda. These combined to 
make it an attractive starting point for virtual environment 
codesign. Although language extension was an explicit goal, 
the goal was to find the smallest, most elegant set of 
language additions necessary in order to support the 
development of virtual environment, especially if the change 
is visible at the language level, such as adding a new 
function or introducing a new syntax. Different parts of the 
language have been extended or improved throughout the 
life time of the project. Some of these improvements and 
additions are ongoing. The next several sections highlight 
some of these major extensions. 

A. 3D Graphics API 

Unicon has a high level 2D graphics API inherited from 
Icon programming language with many extensions and also 
the addition of a comprehensive GUI class library [5]. This 
API was extended to support 3D graphics built on top of 
OpenGL [6]. Unicon’s 3D API is not a wrapper around the 
OpenGL C library interface, but rather a high level 
abstraction that enables programmers to use whatever the 
language provides transparently with the underlying 
OpenGL implementation. 

Instead of the more than 250 OpenGL [10] functions that 
C programmers have to learn, Unicon provides about 30 3D 
functions, and that includes several 2D graphics functions 
that were extended to have 3D semantics. For example the 
DrawLine() function was extended to  take three coordinates 
per vertex when working with 3D graphics instead of only 
two in the case of 2D graphics.  

In addition to the big reduction of function count, Unicon 
also relieves the programmer of many other burdens. Unlike 
OpenGL, Unicon has a built-in support for many window 
systems. Opening windows and handling their events comes 
free of any extra work. OpenGL programmers use third party 

libraries and tools to handle the window system. Another 
simplification by the language is loading and handling 
texture files. Unicon handles all of that with support for 
several image file formats. OpenGL on the other hand, does 
not have any built-in support for image formats. 
Programmers have to either write their own code or rely on 
third party libraries to handle image files. 

The original Unicon 3D API was improved and extended 
over time to include more features after new 3D applications, 
especially CVE, and experiments were conducted using 
Unicon 3D graphics. This includes a way to manipulate the 
OpenGL matrix stack, support for dynamic texturing, texture 
buffering/caching for better performance, JPEG and PNG 
image file format support for, vertex normals support for 
better smooth shading, a way to control the visibility of 
different parts of the scene, and several other improvements 
including 3D selection discussed in section III.C 

B. 3D Models 

One of the challenges in building a 3D virtual world is to 
populate it with 3D content.  Graphics content can be 
hardcoded into the virtual world; this can be done for content 
that is static and simple enough that it is feasible to achieve 
through coding. For contents that change over time or require 
a high level of art, coding is not an option. Hardcoded 
objects need to be recoded anytime a change is needed and 
such changes necessitate rebuilding the application.  

Most virtual worlds rely on data files and in particular 3D 
model files to store the content of the world. Such models 
can be created using applications such as 3D Max and 
Blender. Likewise, many websites sell or in some cases 
provide for free all kinds of 3D models. The challenge lies in 
loading and manipulating such models. OpenGL has no 
built-in support for reading model files. If programmers need 
to read a specific file type, they will have to find libraries or 
write code to support that particular file type. Direct X 
provides support for Microsoft .x file format, but Direct X is 
Windows specific and so it is platform dependent. 

A class library was added to Unicon to support two 3D 
model formats, namely the Simple 3D and Microsoft .x 
formats. The class library also supports terrain generation 
and rendering using certain terrain data file formats. This 
enables Unicon programmers to build richer worlds without 
worrying about the file format, how to load it, or how to 
render and animate it in case it contains animation data. S3D 
and Microsoft X formats were picked because they are open, 
human-readable text file formats. 

A simple tool was also developed to load and view 3D 
model files to let the programmers preview the rendered 
models and look up all of the information about the model; 
such as vertex and polygon counts, whether the model 
contains animation data or not and so forth. The tool also 
supports playing the animations in the model file to let the 
programmer preview the animations in real time. The 
information that that tool provides can help the programmer 
not only to be aware of the model information but also better 
plan how much memory the model will require and how 
much time it takes to render. Fig. 1 is a screen shot of the 
tool which is called: Unicon 3D Model Viewer.  



 

C. 3D Object Selection 

User input is essential in virtual worlds. Much of this 
input comes through direct interaction with the virtual 
world’s content, usually using a mouse. 3D Object selection 
was added to Unicon for this project, complementing its 3D 
graphics API. OpenGL’s low-level object selection 
mechanism was inappropriate for Unicon. A higher-level 
mechanism was built into the Unicon virtual machine, hiding 
all of the low level details and leaving a very simple 
interface at the language level. The interface hides a total of 
11 OpenGL functions that are usually used for 3D object 
selection. In Unicon, one existing function was extended for 
selection, plus a keyword and a window attribute were 
introduced. A keyword in Unicon is a predefined global 
symbol, distinguished from ordinary variables by a leading 
ampersand, whose value is governed by the language control 
structures and built-in functions. Keywords are important 
components in the Icon and Unicon programming languages. 

Working with 3D selection in Unicon is easy and straight 

forward. The new keyword (&pick) provides access to 3D 

selection results. A new window attribute (pick) enables and 

disables 3D selection. The term “pick” was adopted to 

denote the 3D selection feature to avoid confusion with other 

uses of “select”. The term “select” is heavily used in 

different contexts in programming languages and libraries.  

Clipboard contents, text regions and TCP sockets are 

examples of such use.  The meaning of “pick” also conforms 

very well with its role in the language which is selecting or 

picking objects.  A few steps are required to use 3D selection 

in Unicon. These steps are summarized by the following: 

 Enable/disable the selection (on/off) 

 Give selectable 3D objects unique string names 

 Collect selection results for mouse input events 

through the keyword &pick 

 

1) Controlling the selection state 

Turning on/off 3D selection is controlled by the Unicon 

function WAttrib() [5]. WAttrib() is a generic routine for 

getting or setting a window's attributes. To turn on 3D 

selection at any point in the program, the following 

statement is inserted: 
      

WAttrib("pick=on") 
 

By default 3D selection is turned off. The program can 

turn on and off the 3D selection depending on the program 

requirements. For better performance it is recommended to 

turn off selection for any non-selectable object in the scene.  

 

2) Naming 3D Objects 

3D Objects are defined by their corresponding rendered 

primitives. The function WSection() marks the beginning 

and the ending of a section that holds a 3D object. A call to 

the function WSection with a parameter string marks the 

beginning of a 3D object with the strings as its name. 

Another call to WSection() with no string parameter marks 

the end of the 3D objects. All of the rendered graphics 

between a beginning WSection() and its corresponding 

ending WSection() are parts of the same object.  To be 

selectable, a 3D object must have at least one graphical 

primitive, such as a line or a sphere. The string name should 

be unique to distinguish different objects from each other. 

Different objects could have the same name if the same 

action would be taken no matter which of these objects is 

picked. The following code fragment is an example named 

3D object. It simply draws a red rectangle and gives it the 

name "redrect". 
 

WSection("redrect") # beginning of object Fg("red")    
FillPolygon(0,0,0, 0,1,0, 1,1,0, 1,0,0) 
WSection()  # end of the object 
 

In the example above, the call WSection("redrect") 
marks the beginning of a new object with the name redrect. 

Fg("red") does not affect selection because it does not 

produce a rendered object. FillPolygon(0,0,0, 0,1,0, 1,1,0, 
1,0,0) on the other hand does affect selection because it 

produces a rendered object, and it actually represents the 

object named redrect. WSection() marks the end of the 

object named redrect. 

 

3) Retrieving Picked Objects 

In general, picking objects is associated with the mouse. 

In Unicon, keyboard events are (mostly) corresponding one 

letter strings and mouse events are small negative 

integers.  Mouse and keyboard state information can be 

accessed thought a set of keywords. &lpress and &rpress 

for example denote values that indicate that there was a left 

click or right click event, respectively.  The Unicon function 

Event() produces these events from the event queue.  It 

also generates other information related to such events such 

as the x and y coordinates of the mouse cursor at the time of 

the click. &pick was designed to work in the same fashion 

with mouse clicks. If selection is enabled, &pick generates 

all of the string names of the objects under the cursor, one at 

 

 
 

Figure 1. A 3D Model Viewer was developed to help Unicon programmers 

use 3D models in games and virtual worlds 



a time. The following code fragment writes all of the 

objects’ names that were picked by the mouse left-click: 
 

every picked_object := &pick do 
   write(" picked object :", picked_object) 
 

If there were no selectable objects under the cursor at the 

time of the event, &pick just fails and produces no results.  

&pick gets its results from both left-clicks and right-clicks. 

It is up to the programmer to decide and assign specific 

behaviors or event handlers to different mouse buttons 

based on the picked object. 

 

4) Complete Example 

This section presents a simple full example program. 

The example demonstrates the use of the 3D selection 

mechanism in Unicon. Three spheres, red green and blue, 

are drawn in a 3D graphics window. The red and blue 

spheres are selectable but the green is not. The user can 

click on any place in the window and the program reports 

the picked object to the user. If the user clicks on the red or 

blue sphere he will get the message “you picked red ball” or 

“you picked blue ball”. If the user clicked anywhere else 

including on the green ball he will get the message “you 

picked nothing”. That is because the selection is off for the 

green ball so it is not selectable.  
 

procedure main() 
# open a 3D window and make it the default  
&window := open("3D selection in Unicon",   

"gl","size=500,500") 
# begin a new selectable section/object 
WAttrib("pick=on") #turn on 3D selection 
WSection("red ball") 
   Fg("red") 
   DrawSphere(1, 0.5, 0, 0.5) 
WSection() # end of the red ball 
 

# Draw a nonselectable green ball 
WAttrib("pick=off") #turn off 3D selection 
Fg("green") 
DrawSphere(-1, 0.5, 0, 0.5) 
 

# begin a new selectable section/object 
WAttrib("pick=on") #turn on 3D selection 
WSection("blue ball") 
    Fg("blue") 
    DrawSphere(0, -0.5, 0, 0.5) 
WSection() # end of the blue ball 
 

#setup the eye to look at the spheres 
Eye(0,0,4, 0,0,0, 0,1,0) 
Refresh() 
 

# enter an event loop to handle user events 
repeat{ 
 case \Event() of { 
   &lpress | &rpress : write("you picked : ", &pick | "nothing" ) 
    } 
  } 
end 

D. Improving 3D graphics performance  

The 3D performance of programs written in Unicon 

represents a compromise between the underlying C OpenGL 

code of the virtual machine runtime system, and the 

flexibility and ease of programming afforded in the higher-

level language. Performance can be lost due to dynamic 

language representations of data, or by the language’s hard-

wiring various parameters of the OpenGL semantics. 

 

1) Data respresentation 

3D graphics makes extensive uses of integer and double 

data types. A 3D model for example, might contain tens of 

thousands of double and integer numbers for vertex data, 

indices, texture coordinates, animation and more. These 

kinds of data are usually stored in arrays that get passed to 

OpenGL for final processing and rendering. Unicon’s list 

data type is ideal for storage and manipulation of such data 

at the language level. Unicon lists are not arrays; they are 

more general and more powerful. A list can store 

heterogeneous data types, and can grow and shrink. This 

means that lists have a different representation and 

implementation than that of the C arrays used by OpenGL. 

While this makes lists very flexible and easy to use, it also 

means the data stored in a list cannot simply be passed to 

OpenGL; it has to be converted to an array format first. The 

underlying implementation of 3D graphics in Unicon was 

designed to avoid repetitive conversion for the same data 

from one frame to the next if the data does not change. The 

conversion is still necessary whenever the data changes for a 

specific object, which is the case for many animated objects. 

 

2) Arrays as Lists 

Improving performance by buffering or caching the data 

converted from a list to an array is only a partial solution. 

Buffering imposes a memory overhead that might be large 

for rich scenes, but also it does not work for any dynamic 

object in the scene that requires constant update to its data.  

A more general and optimal solution was needed that did 

not require more memory and worked well for any objects, 

including those that involve animation. Animation makes a 

difference because usually animation is done by key 

farming and applying an animation transformation to vertex 

data, generating a new set of world vertices that replaces the 

old set. In addition to that, the same data would be visible to 

both the language level and the underlying OpenGL 

function, bridging the gap between the language interface 

and the graphics library.   

One way to accomplish this is to add new data types to 

the language to hold arrays of integer and double data. To 

have the least impact on the language interface, another 

route was taken. The list data type was extended to support 

arrays of data by changing its implementation in the 

language runtime system.  This keeps the design in line with 

the language spirit and respects a major goal, which is not to 

have any visible additions to the language interface unless it 

cannot be avoided. 



In the new design of lists, for integer and double data 

types, an array is just another list that happens to have a 

fixed initial size and also one type of data, either integer or 

double. To avoid any accidental array creation, a new 

constructor function for arrays was added. A “regular” list 

can be created using the list(size, initial value) function. An 

“array” style list can be created using the new array(size, 

initial value). For an array list, the initial value data type 

(integer or double) dictates the data type of the returned 

array list. Beyond the creation of a list, whether “regular” or 

“array”, all other operations are the same. The following 

code fragment creates two lists of size 10 and initializes 

their elements from 1.0 to 10.0. 

 
L := list(10) 
A := array(10, 0.0) 
every i:=1 to 10 do  

A[i] := L[i] := real(i) 

 

Any non-array operation that is applied to an array list 

would force it to be converted to a regular list. For example 

applying pop(), push(), get() or put() at the list array A in 

the code  above. This is done by the runtime system without 

the programmer intervention. 

E. Networking 

Unicon includes a high level networking interface with 

built-in support for protocols such as TCP, UDP, HTTP and 

POP. Network connections are opened and closed like 

regular files using Unicon’s open() and close() functions 

with the appropriate parameters. Data can be read or written 

to these connections using read() and write() functions by 

passing the opened connection as their first parameter. The 

following short example program demonstrates the ease of 

use and simple interface of HTTP connections, open() with 

mode “m”. The program downloads a remote file specified 

by a URI on the command line, and saves it as a local file. 

The Icon Program Library module basename is used to 

extract the filename from the URI. 

 
link basename 
procedure main(argv) 

f1 := open(argv[1],"m") 
f2 := open(basename(argv[1]),"w") 
while write(f2, read(f1)) 

end 

 

Despite the simple networking interface that provides 

access to a wide range of complex capabilities in the 

underlying implementation, extensions and improvements 

were still needed to support features in virtual worlds. Real 

time applications cannot afford to wait for long times for a 

connection to open or a slow server to respond. The open() 
function was extended to allow a timeout parameter that 

puts an upper limit on how long an application is willing to 

wait before giving up on a given connection.  

For the same reason, a new non-blocking read() 
function was needed. The new function named ready() was 

added to serve that purpose. ready() is similar to read() in 

most aspects except that unlike read(), it returns 

immediately with whatever data is available on the 

connection. If no data is available, ready() simply fails in 

Unicon terms. This behavior is very critical in real time 

applications such as virtual worlds. 

A good example of language/application codesign is the 

listener mode, with which a server allows new connections 

while simultaneously handling existing users on the same 

thread. Unicon’s original “network accept” server mode 

(open() mode “na”) was a blocking operation and would 

require one process (or thread) per user. Empirical use in the 

CVE system motivated the addition of a “network listener” 

mode, a non-blocking server open() that enables a single 

process or thread to handle new connections while serving 

multiple existing user connections. 

F. Audio and Voice Over IP 

Audio is an essential part of games and virtual worlds’ 

experience. Voice chat is also becoming an integral part 

such applications. Unicon was extended to support such 

capabilities. Only one function, VAttrib(): similar to an 

existing Unicon graphics function WAttrib(), was added. 

Two existing function, open() and close(), were extended 
to support VoIP session opening and closing 
respectively. Extending these familiar functions and 
overloading them with new jobs simplifies the tasks of 
programmers learning and using the VoIP interface [11]. 

Unicon’s VoIP interface is a modest extension of the file 
data type. The function open() with mode “v” for voice, 
opens a voice session at a specific port and returns a handle 
to that session. It takes the port number and additional 
optional parameters that allow the programmer to specify 
multiple destinations. This function fails if the sound device 
is reserved by another program or if it cannot open a socket 
for the RTP protocol. To close a voice session, the function 
close(x) is passed a voice session handle. When passed a 
voice session handle, the function close(x) terminates the 
session and releases all resources related to that session. 

In order to make a meaningful voice connection, a 
program adds destinations representing other users' voice 
sessions. The following Unicon program opens a voice 
session at port 4500 and establishes a voice connection with 
a destination at the time the session is opened. 

 
procedure main() 

local vsession 
vsession:= open("4500","v","jef:128.123.64.48:5000") 
write("Voice session is opened, Press Enter to close:") 
read() 
close(\vsession) 

end 
 

Unicon VoIP sessions can add and drop destinations, and 
change the voice session settings on the fly using the 
VAttrib() function. Changing the voice session settings on 



the fly adds a very important feature to the Unicon's VoIP 
APIs. Users do not have to close the voice session and lose 
all the connections just to change one attribute such as the 
bandwidth level. VAttrib() also allows users to perform 
queries about those who are listening to the current voice 
session especially in the case of a multicasting situation or 
n-user conferencing. VAttrib() takes two parameters: the 
voice session handle and a string of attributes. 

IV. COLLABORATIVE VIRTUAL ENVIRONMENT 

Virtual environments can be defined as computer-
generated, three-dimensional settings in which the users of 
the technology perceive themselves to be and within which 
interaction takes place [8]. As the technological barriers to 
creating virtual worlds have decreased, researchers have 
created many collaborative virtual environments to serve 
various domains. Virtual environments provide the user 
with the amazing experience of moving around and 
interacting with a simulated world [9].  

CVE (http://cve.sourceforge.net/) is an educational 
platform that was built primarily to support two uses: (1) 
distance learning by college computer science students, and 
(2) software development and group collaboration. Fig. 4 
shows an example scene developers might see in this 
environment. The collaborative virtual environment 
provides developers with a general view of other users and 
what they are doing. It allows developers to chat via text or 
VoIP with other team members and with developers from 
other teams in real time. 

CVE was built as a general prototyping framework 

rather than a particular virtual world. From a design point of 

view, the CVE has three major layers: 

1. The language layer 

2. A class library 

3. An application layer 

From a functional point of view, the CVE also has three 

major components: 

1. A virtual space that users can explore and also 

meet and chat 

2. A social collaborative IDE subsystem called SCI 

where users can write and share code and see each 

other’s activities. 

3. Non-player characters (NPCs) and quest system 

that users can interact with and take on quests 

The following section discusses the CVE design layers. The 

remaining two sections discuss SCI and NPCs subsystems. 

A. CVE Design Layers 

Out of the three CVE layers, the bottom one, a very high 

level language, plays the major role in shaping the design 

and implementation of the virtual world. As discussed in the 

earlier sections of this paper, the language was augmented 

with very simple 3D graphics, object selection, network, and 

audio API's to facilitate the building of such worlds.  

In the CVE middle layer lies a class library, in addition 

to the language class libraries that were added to support 

new features required by the virtual world, providing 

infrastructure for the networked 3D environment, e.g. the 

behavior of doors, whiteboards, and avatars; the CVE server 

enables user interaction and shares state between clients; 

CVE also provides simple “builder" tools to generate a 

virtual environment from inputs such as 2D floor plan data 

and extract textures from digital camera photos. 

The last and top layer is the application layer for any 

particular virtual world generated using CVE which 

typically consists of: a 3D model produced semi- 

automatically using CVE builder tools; a set of domain 

collaboration tools; and a set of user accounts, created on 

the CVE server. In addition to that, New virtual spaces that 

can be created dynamically from within the virtual world, 

new  NPCs and quests can be added over time to expand the 

world and create new activities. 

B. Social Collaborative IDE 

A subsystem of CVE called Social Collaborative IDE 
(SCI) supports communication and collaboration within a 
distributed software development community, and addresses 
their needs in a variety of different phases in a team 
software development process. 

Fig. 2 shows the integration of the presence information, 
collaboration tools, and software development facilities in a 
single environment.   

 
The inner oval represents the CVE collaborative virtual 

environment where users can interact with each other within 
a 3D virtual world. CVE provides developers with a general 
view of other users and what they are doing. In the middle 
oval, ICI developers use synchronous collaborative software 
development tools that extend CVE’s generic virtual 
environmental capabilities to communicate, interact, and 
collaborate in solving their programming problems. The 
outer oval provides the developers with groups’, users’, 
projects’, and sessions’ presence and awareness 
information. SCI’s asynchronous features help users to 
select and coordinate their active synchronous 
collaborations. In general, the asynchronous tools drive the 
use of the synchronous tools, and the two categories 
complement each other. CVE, ICI, and SCI are 
complementary tools that work together to provide a unique 
single development environment. Fig. 3 shows the structure 
of the current SCI space. 

 

 
 

Figure 2. The SCI architecture 



SCI started with a basic standalone IDE that lives inside the 
Unicon programming language called UI. Considering the 
fact that CVE was initially built for the purpose of 
supporting distance learning and improve software 
engineering instruction, UI was extended to support multiple 
programming languages and integrated inside the CVE 
virtual environment (see ICI in Fig. 2). To allow users to get 
the benefit from the combination of the online presence 
supported by the CVE and the software development, the 
system was extended by adding awareness, presence, and 
social networking features (see SCI in Fig. 2). 

C. Non-Player Characters and Quests 

NPCs are an integral part of many virtual worlds 

especially role playing games and massively multiplayer 

online games (MMOs). NPCs usually perform the task of 

presenting activities, guiding and completing the storyline 

of the game. NPCs usually take the role of enemies, allies, 

monsters or pets, but their most important role is that of 

quest giver or assistant to the user who goes on adventures.  

In order to populate the CVE virtual world with NPC 

and quest activities a new framework for creating them was 

proposed called PNQ [7].  The framework is independent 

from the CVE system enabling a PNQ NPC to be part of 

several virtual worlds. The goal is to promote virtual 

worlds’ content reuse. It also enables users to create NPCs 

and quests outside the virtual world without the need to 

make changes to the source code of the virtual world. New 

NPCs and quests can be added using template files or the 

quest builder which is part of the PNQ framework. The user 

can customize an NPC and then import it to the virtual 

world. CVE NPCs’ avatars can be created from 3D models 

produced by tools such as 3D Studio Max and exported in 

Microsoft .x format. Fig.4 shows some example NPC 

avatars models available in the CVE environment along 

with a quest activity.  

 

V. DISCUSSION 

The main innovations in building CVE are: combining 

its development with the development and enhancement of 

the host language; building abstract and general class library 

and tools that reduce the programming effort necessary to 

build a virtual world; incorporating a social collaborative 

IDE into the virtual world, and finally facilitating the 

process of adding NPCs and quests with the potential of 

sharing them with other virtual worlds. 

Building support into the language includes both, 

graphics, networking, audio and the integration of these 

subsystems. Language extension was the choice instead of 

writing libraries or modules when a feature is general like 

adding a non-blocking read function, or when it has the need 

or the potential to interact with other features in the 

language virtual machine or runtime system. Once a given 

hardware capability is sufficiently ubiquitous, adding 

control structures and built-in syntax to access it is not just a 

notational convenience, but an enabling technology. 

Adding new classes was the choice when features were 

specific to virtual worlds. The CVE class library primarily 

serves to model virtual environment functionality 

independent of its views and controls. The research 

contribution here is not to invent new paradigms, but to 

explore the simplest implementation techniques that provide 

sufficient performance on current hardware. This design 

bias, combined with the very high level language used, 

make it easy to add new features and conduct experiments. 

In some cases, new extensions or improvements to the 

language were not a direct product of a feature addition 

required by the virtual world, but rather driven by other 

aspects such as improving the 3D graphics performance.  In 

 
Figure 3. The structure of the SCI space 

 

 
 

Figure 4. NPCs in CVE virtual world 



the early stages of developing CVE, the list data type was 

the data type of choice to store a lot of the virtual world 

data. In later stages and especially after adding the data 

intensive 3D models, it was clear that smooth animation 

cannot be achieved with most of the data being converted 

continuously from lists to arrays. While some very simple 

scenes got a modest increase in performance, for some 

scenes especially those that have 3D models, the 

performance was tremendously improved with up to 100x 

speed up. Fig. 5 shows a 3D model for a warrior with 

animation for a walk cycle. The model has a 485 vertex 

count and 528 face count. Without using arrays the 

animation runs at less than 5 frames per second. This 

number was pushed up to 80 frames per second after 

introducing arrays as a special case of the list data type in 

Unicon. This model runs comfortably at 400 frames per 

second in C code, but the programmer has to deal with the 

complexity of writing C. One of the primary goals of this 

research was to overcome that complexity by using a very 

high level language. 

 

VI. CONCLUSIONS 

This paper discussed aspects of the codesign between the 

Unicon programming language and the CVE collaborative 

virtual environment. On the language side this codesign 

included several extensions to Unicon’s 3D graphics and 

networking facilities. On the application side, the CVE 

virtual environment was modified to utilize several new 

language features as they were added, including 3D object 

selection, VOIP, and non-blocking I/O. The CVE 

application’s 3D rendering model was specifically tailored 

to take advantage of Unicon’s “render sections” control 

structure for both object selection and the ability to 

dynamically include or exclude portions of the rendered 

scene on the fly.  

The results of this work can be seen on both sides of the 

research, the language and the virtual world. In the first side, 

the language has many new extensions and improvements 

that benefit wide range of applications and not limited to 

virtual worlds development only, even though many 

extensions were driven by that. On the other side, the CVE 

platform is very suitable for quickly prototyping a new 

virtual world serving like an engine. While CVE is usually 

tested with a small number of simultaneous users, 30 or less, 

it has been gradually improved in term of graphics and 

network traffic to scale to larger numbers of users. CVE has 

not been developed with the kind of hardware or software 

engineering resources that go into commercial games that 

handle hundreds or thousands of users. 

ACKNOWLEDGMENT 

This work was supported in part by NSF DUE- 0402572 
and in part by the Specialized Information Services division 
of the National Library of Medicine. 

REFERENCES 

[1] A. Carpenter, “Applying risk analysis to play-balance RPGs,” 
http://www.gamasutra.com/view/feature/2843/applying_risk_
analysis_to_.php. (accessed July 2011) 

[2] K. Klues, M. Kazandjieva, and P. Levis, “Operating 
system/language co-design,” 

http://sing.stanford.edu/os_language. (accessed July 2011) 

[3] C. Jeffery, S. Mohamed, R. Pereda, and R. Parlett,  
Programming with Unicon,  2004. 

 Unicon Project at http://unicon.org. 

[4] R. Griswold, and M. Griswold, The Icon Programming 
Language, 3rd ed. Peer-to-Peer Communications. San Jose, 
CA,  1999. 

[5] R. Griswold, C. Jeffery, and G. Townsend, Graphics 
Programming in Icon. Peer to Peer Communications, San Jose 
CA, 1998. 

[6] C. Jeffery, O. El-khatib, Z. Al-sharif, and N. Martinez, 
“Programming language support for collaborative virtual 
environments,” Proc. 18th International Conference on 
Computer Animation and Social Agents. CGS. 2005. 

[7] J. Al-Gharaibeh, and C. Jeffery, “PNQ: Portable non-player 
characters with quests,”. Proc. 2010 International Conference 
on Cyberworlds, CW2010, 2010. 

[8] Dictionary.com. available at 

 http://dictionary.reference.com/browse/virtual environment. 

[9] J. Langton, T. Hickey, and R. Alterman, “Integrating tools 
and resources: a case study in building educational groupware 
for collaborative programming,” Journal of Computing 
Sciences in Colleges, 2004. 19(5): pp. 140 – 153. 

[10] D. Shreiner, M. Woo, and J. Neider, OpenGL(R) 
Programming Guide: The Official Guide to Learning 
OpenGL, Version 1.2, 3rd ed.    Addison-Wesley Longman, 
Amsterdam, 1999. 

[11] Z. Al-Sharif, and C. Jeffery, “Adding high level VoIP 
facilities to the Unicon language,” Proc. Third International 
Conference on Information Technology: New Generations, 
ITNG 2006, pp. 524-5 

 

 

 
 

Figure 5. An example 3D model with an animation of a walk cycle.  

The performance of such a model was greatly improved by 

 introducing arrays to be part of the list data type in Unicon 

http://dictionary.reference.com/browse/virtual

