
PNQ: Portable Non-Player Characters with Quests

Jafar Al-Gharaibeh and Clinton Jeffery

Computer Science Department

University Of Idaho

Moscow, USA

jafara@vandals.uidaho.edu jeffery@uidaho.edu

Abstract—There is a growing interest in using game-like

virtual environments for education. Massively multiuser online

games such as World of Warcraft employ computer controlled

non-player characters (NPCs) and quest activities in training

or tutoring capacities. This approach is very effective,

incorporating active learning, incremental progress, and

creative repetition. This paper explores ways to utilize this

model in educational virtual environments, using NPCs as

anthropocentric keys to organize and deliver educational

content. Our educational NPC design includes a knowledge

model and a user performance model, in addition to the

physical traits, behavior, and dialog model necessary to make

them interesting members of the environment. Web-based

educational content, exercises, and quizzes are imported into

the virtual worlds, reducing the effort needed to create new

NPCs with associated educational content. The NPC

architecture supports multi-platform NPCs in two virtual

environments, our own CVE (Collaborative Virtual

Environment) and Second Life.

Keywords- virtual worlds; CVE; NPC; quest; MMO.

I. INTRODUCTION

The spectacular success of Massively Multi-user Online
(MMO) games has led to a large amount of interest in
educational multi-user virtual environments. World of
Warcraft (WoW) and similar games have demonstrated both
the mass appeal and the potential of this genre. Organizations
such as the U.S. Army are using custom games for recruiting
and training purposes, and NASA has proposed an
educational MMO to use a space theme to promote interest
in science and engineering education and careers.

As yet, no one has produced an educational MMO with a
significant following. MMOs take years and millions of
dollars to develop. A few institutions such as Harvard and
Indiana have developed small-scale educational virtual
environments by hiring game companies to write them atop
proprietary game engines or using a custom version of a
commercial virtual world such as ActiveWorld, but most
educators that wish to work with MMOs find their way to a
general-purpose MMO such as Second Life.

Second Life’s main focus is on user-created content. The
landscape, buildings, virtual objects, and the appearance of
the avatars are largely the result of end-user actions.
Educational institutions have presences there for marketing
purposes and on-line lectures and discussions. They are in
the process of exploring the educational potential of Second
Life, but the cost of building educational content (beyond
virtual buildings and meeting places) is high. Second Life

does not directly support the quests and activities that are one
of the main reasons to play MMOs; quests resemble the
activities that are the mainstay of conventional education
software. Similarly, Second Life has no model of experience
or skills development which are a major motivator for users
to play MMO games.

Second Life’s scripting language, called LindenScript,
enables virtual objects to incorporate behavior, and access
external content via protocols such as HTTP. One can build
anything with this framework. However, without support for
modeling user activities and experience, the cost of
developing substantial educational applications in Second
Life is prohibitively high for most educators.

The project described in this design paper began not
within Second Life but rather with a custom educational
virtual environment for computer science distance education,
called CVE. With the goal of enabling distant students to
attend lectures and office hours, and do homework
assignments and labs within the virtual environment, initial
efforts focused on reproducing a local CS education
environment, including 3D representations of two physical
CS departments, avatars, text and voice chat, and interactive
collaboration on common CS tasks of editing, compilation,
execution and debugging. The initial project was placed on
Source Forge for public access at cve.sourceforge.net, but its
authors had to face the question: who cares? Perhaps some
developers of Second Life projects have faced a similar
dilemma: the virtual environment lacked the compelling
aspects of discovery, quest activities, and experience levels
and advancement which make MMOs special. It was decided
to solve this problem for both the CVE and Second Life
virtual environments, in order to learn from the comparison.
The central building blocks for the experiment are the
computer-controlled non-player characters (NPCs), who
serve as tutors and record keepers for users’
accomplishments. The design for the NPCs and their quests
presented in this paper is called: Portable Non-player
character tutors and Quests (PNQ, pronounced “pink”).

II. RELATED WORK

This work relates to the design of NPCs and also to
education in virtual environments. Redfern and Naughton
[5] discuss the use of modern technology and the advances in
virtual environments research in distance education. They
propose that virtual environments, specifically where users
can interact with each other and with NPCs, are suitable
tools to improve education.

Figure 1. NPCs and other users in CVE. An NPC is marked with red
ball above their heads.

The Belief-Desire-Intention (BDI) agent architecture
enhances users’ interaction with NPCs by developing
behavior models that resemble human behavior [12].
Merrick and Maher presented a design for NPC behaviors in
computer games based on motivated reinforcement learning
[6]. They also presented an adaptive NPC model which
considers the impact of the changing environment in open-
ended worlds on the NPC. The adaptive model evolves and
adapts the NPC to the changes in dynamic environments and
does not limit its behavior to the pre-programmed rules [7].

CHI Systems, under contract to the U. S. Army Research
Institute developed a training system called Virtual
Environment Cultural Training for Operational Readiness
(VECTOR). In this system they applied experiential
scenario-based virtual environments to train solders in
cultural familiarization. They incorporated cognitive-model-
controlled NPCs that can evaluate and respond to the cultural
propriety of trainee’s actions [8].

Mateas and Stern developed a Java-like behavior
language for story-based agents called ABL. The language
has an interface to communicate with a robot’s sensory
motor system. It supports joint actions, sequential and
parallel behavior. The following example from [9] illustrates
the feel of code written in ABL.
parallel behavior StartTheHandlers() {

 with (persistent, priority 20)

 subgoal handlerDAGreet();

 with (persistent, priority 15)

 subgoal handlerDAReferTo_grace();

 with (priority 10, ignore_failure) subgoal

 handlerPreInviteAptMove();

}

sequential behavior BeatGoals() {

 with (persistent when_fails)

 bgOpenDoorAndGreetPlayer();

 with (persistent when_fails)

 bgYellForGrace();

 with (persistent when_fails)

 bgInviteIntoApt();

}

The use of multi-user virtual environments for education
has been discussed in the Quest Atlantis project
(QuestAtlantis.org). Quest Atlantis is a learning and teaching
computer game that leverages commercial gaming
environment strategies to develop a 3D multi-user
environment to immerse children, ages 9-12, in educational
activities. It allows children at participating elementary
schools to engage in a virtual world and perform educational
activities, chat with other users, and build virtual spaces in
some designated plots. [10, 11]

Several interesting experiments have added non-player
characters to Second Life. No existing Second Life NPCs
deliver tutorial quests from declarative specifications as in
the case of PNQ. Art Fossett’s blog describes a non-player
character created as a virtual object [2]. Making an object
look humanoid is a challenge in Second Life, but can be
accomplished using sculpted primitives, which are a
restricted form of 3D model that graphic artists can produce

with commercial grade tools at substantial effort. Fossett
couples this humanoid-looking virtual object with an
external “chat” program called a PandoraBot, which
implements AIML chat and plays a role similar to the PNQ
dialogue model. Doron Friedman et al built a Second Life
NPC by taking an ordinary user avatar and attaching a virtual
object (a ring) to it that turns the avatar into a puppet
controlled by an external program. This NPC can move
around the environment, albeit with very simple rules for
essentially random movement [3].

III. NON-PLAYER CHARACTER TUTORS

NPCs are an important component of role playing games
and MMOs, presenting activities and the storyline of the
game. Computer-controlled NPCs can be enemies, allies,
monsters or pets, but their most important role is that of
quest giver or assistant to the user who goes on an adventure.
Quest givers are also important because educational content
can be delivered to users through quests in educational
virtual worlds. This technique can be used to draw users into
tutorial quests. Figure 1 shows several avatars from the CVE
virtual world including NPCs. Figure 2 shows avatars from
Second Life. A quest giver NPC in CVE has a red ball over
his head, while in Second Life the NPC has a red ring around
his arm. This marks NPCs with available quests as persons in
the environment with whom the user has a reason to interact.

Figure 2. An NPC and another user in Second Life. The NPC is
marked with a red ring around her arm.

A PNQ is created much as a regular (human-controlled)
character. End users can utilize their regular account or an
auxiliary account to create an NPC character, adding quests
and activities and making them available to other users.
When the user is logged off, their avatar is still present on
the system, controlled from a remote NPC client just like a
regular user and functioning as a quest-giving NPC and a
virtual secretary, interacting with other users as instructed by
the player. Many educators will choose to create multiple
characters playing specific educational roles, giving them an
artificial personality and a set of activities for other users,
and leaving them under the control of the computer full-time.

A. NPC Profiles

Creating a PNQ NPC consists of specifying its
knowledge, dialogue, and behavior models in a profile file.
The profile is read at start up via HTTP by an NPC agent, a
program that "plays" the NPC as a client on the virtual world
server. An NPC profile is a file containing NPC details in
simple HTML (for handwritten profiles) or XML (for
machine generated profiles) format. An NPC profile can be
created and maintained as a webpage that contains the
following sections. In HTML they are each given in a named
anchor tag. Although a graphical wizard for creating profiles
is available, many NPCs can be created manually by copying
a template and changing the content details.
id An "ID card" presentation of the NPC, suitable

for an "inspect details" operation in a game. The
id provides an image, name, and basic attributes.
Figure 3 shows an example ID card.

knowledge A specification of the NPC’s knowledge model
consists of a teaching section with a bulleted list
of named links to quests. NPC knowledge also
includes a more dynamic experience (user
model) database that is not part of the profile.

dialogue A specification of this NPC's verbal capability.
behavior A specification of this NPC's active (e.g.

mobile) behavior. The four kinds of PNQ
behavior specification include stationary,
wanderer, routine, and companion.

avatar A specification of this NPC's avatar (link to 3d
model file, dimensions, and textures).

B. Knowledge Model

PNQ NPCs use two types of knowledge: the quests they
offer, and what they remember about users from past quests.
The former is almost static, refined occasionally by the
NPC’s creator. The latter is dynamic and accrues during
game play. The management of NPC quests is discussed in
section IV.A below. The NPC’s user experience model is
discussed in section IV.B.

C. Dialogue Model

In World of Warcraft, players interact with NPCs using
popup menus. This contrasts egregiously with human player
interactions. Some MMOs such as Everquest enhance the
realism of NPCs by forcing NPC interaction through the chat
channel. NPCs that chat feel more natural but are frustrating
when they fail to respond usefully to a player’s conversation.

Chat-based interaction is more “portable” across virtual
worlds. The PNQ NPC’s dialogue model consists of chat
rules written in AIML [4] augmented with offers to
undertake available quests. The AIML rules determine how
the NPC replies to player utterances.

D. Behavior Model

The PNQ NPC behavior model provides rules for NPC
movements and responses to external stimuli. Four NPC
behavior types are supported: stationary, routine, wanderer,
and companion. A stationary NPC does not move from a
specified home location. A routine NPC regularly does
specific tasks including movements at predetermined times.
A wanderer is an NPC that moves randomly within a
prescribed domain. A companion NPC accompanies a player
on a destination-based quest.

A behavior language is needed to write the rules that
describe how an NPC acts in the virtual world. As discussed
in section II, ABL is an example of such a language [9].
ABL and other scripting languages were not chosen for this
project because they were viewed as too low-level. Many of
the expected NPC authors are educators with little or no
programming background. Thus, a new high level
declarative behavior model language was invented for PNQ.
The new language captures simple behavior scenarios that an
NPC should be able to do in an educational virtual world,
including movements and offering quests. Figure 4 shows a
fragment of the grammar.

The following is a stationary NPC example. The NPC
logs in at 8 AM in room jeb 228 and offers quests from its
profile in the “help” topic until 5 PM.

Figure 3. An NPC ID card.

BehaviorModel : Type "{" States "}";
Type : Wanderer | Stationary | Routine | Companion ;
States : State States | State ;
State : StateName optSchedule "{" Actions "}" ;
Actions : Action Actions | /* empty */ ;
Action : Login | WalkTo | SetState | Offer| Redirect | Logout |

Teleport;
Login : LOGIN TIME IN Place ;
WalkTo : WALKTO Place optAT ;
SetState : SET StateName;
Offer : OFFER Topics;
Topics : Topic "," Topics | Topic;

Figure 4. Part of the grammar for the PNQ NPC behavior model.

Stationary {
 default : {
 login 8:00 in place(jeb 228)
 offer help
 logout 17:00
 }
 }

If no “offer” statements appear in a behavior model, the
default behavior is to offer all eligible quests listed in the
NPC profile. The following is a more complex example that
features a Routine NPC. The NPC logs in to the virtual
world and walks to different places, provides office hours
and “teaches” by offering quests. In this model, the NPC
spends different parts of the day in different states. The state
named MWF is scheduled (by a string notation inspired by
the UNIX cron(1) tool) to commence at 10 AM every
Monday, Wednesday, and Friday.
Routine {

 default : { login in place(jeb 226) }
 MWF "0 10 * * MWF": {
 login in place(jeb 005 corridor)
 walkTo place(jeb 226)
 state(officehours)
 walkTo place(jeb121) at 10:30
 state(teach)
 walkTo place(jeb 226) at 11:30
 logout
 }
 officehours {
 offer debug, question
 }
 teach {
 offer CS210, programming languages, Lisp, Flex, Bison
 redirect debug : Dog
 }
 }

IV. QUEST ACTIVITIES

In games like WoW, quest activities are used to teach the
game itself as well as to entertain. WoW features about 10
types of quests, requiring the user to perform various tasks,
such as combat, exploration, delivery, and gathering or
manufacturing of virtual items. Other MMOs provide
additional kinds of quests. Many of these quest types involve
activities that could be utilized in educational quests.
Educational MMOs will define many new quest types for
learning purposes. In a geology class, users might get
rewards for exploring a virtual world that reflects real places
and collecting information about those places: minerals they
have, climate, water resources, etc. By analogy to Second
Life’s user-defined virtual objects, educational MMOs will
need end user teacher-defined quest activities. The NPCs and
quests described in this paper are intended to fill that role.

Quests are a primary mechanism for tutorial learning.
Quest specifications resemble UML use case descriptions
[1]. The kinds of steps are limited to those observable by
NPCs interacting with the user in the supported virtual
environments. The main differences between a quest and a
use case description are that a quest may contain auxiliary
content (such as quizzes and demonstrations) that are used to
measure completion of the quest steps, and a quest lists
rewards for completion, if any. Quizzes and demonstrations
will often need to be external references to pools of

questions. The difference between quizzes and
demonstrations is that a quiz is delivered and answers
interpreted by an NPC agent directly, while a demonstration
involves an in-world interaction (in this case, a session with
a tutorial UNIX command-line shell) that is monitored by an
NPC agent. Evaluation of deeper understanding may require
offline human evaluation, or fall outside the realm of what an
NPC Tutor can reasonably perform.

A. Quest Repository

PNQ Quests are maintained in the same way as NPC
profiles: they are HTML files linked from the knowledge
section in the NPC’s webpage. The quest webpage includes
several sections. A quest builder tool facilitates the process
of creating new quests.

Figure 5 shows an example quest from the domain of
computing. Figure 6 is a screenshot of a quest being offered
in a response to a user clicking a quest red sphere above an
NPC. Figure 7 shows a quest activity example from Second
Life where the NPC is informing the user about an error in a
Java quest that the user has submitted.

B. Quest Rating and User Reward via Peer Review

Players need to be motivated to perform quests, and their
accomplishments need to be recognized. Each quest
completed from any virtual world needs to be rewarded and
remembered. Rewards in the form of virtual objects or
clothing might be duplicated on multiple virtual worlds,
while other rewards may be specific to a particular world,
such as Linden dollars, or a new character ability.

The main kind of reward that matters to PNQ is the
experience points in specific topic areas that enable a
character to undertake more advanced quest activities. In the
ls activity described in Figure 5, two specific previous quests
(tutorials on Files and Directories) had to be completed
before the NPC offered this user the ls quest. Completing the
ls quest enables any quest that depends on it specifically, and
also awards a point of general UNIX experience.

Name : ls

Summary : Learn the basics of the ls command.

Requires : Files, Directories

Steps : Read the UNIX manual page for ls.

Pass a quiz on ls command line options.

Demonstrate "ls" for Tux.

Rewards : UNIX: 1

Quiz (2/2 to pass)

How can you get a long listing that shows file permissions and

size?

> ls -l

How can you list all files in all subdirectories?

> ls -R

Demo (2/2 to pass)

Show me a simple listing of the root directory.

> ls /

Show me a listing of the current directory, sorted by the time

each file was last accessed?

> ls -t

Figure 5. An example quest as it appears in a web page.

When teachers create new tutorial quests, they vary in
terms of how fun they are, and their educational value. In
PNQ, the fun is rated by user upon quest completion.
Additionally, educational content is evaluated by domain
experts. When an activity is created, its author suggests its
category and experience point value, but those values are
honored only after the activity has been rated.

V. DESIGN AND IMPLEMENTATION

The PNQ NPC client is designed as a standalone entity,
separate from the server. An NPC client connects to the
server like a regular user, with an NPC indicator flag. This
design frees the server from NPC management, makes the
NPC more flexible by allowing the NPC to run from any
machine and allows a human to “play” an NPC. Moving the
NPC to a different machine entails moving the NPC’s

dynamic knowledge about users and their quests. This
problem is partially solved by logging dynamic data on the
server, if it supports that, which updates the NPC upon its
launch. Since Second Life does not have a user model,
quests completed there are logged to the CVE server.

A. NPC’s Architecture

The NPC client design mirrors the NPC profile. The following

is the list of the NPC’s major components:

1) A knowledge engine: composed of two parts. The

quest knowledge is almost static and gets updated

irregularly. The NPC also maintains dynamic knowledge of

the users’ information and their quest activities such as their

current position and their active and completed quests.

2) A behavior engine: dictates how the NPC will behave

and move around in the world based on the NPC profile.

3) A chat engine: analyzes the incoming chat messages

and generates proper response if possible. Chat messages are

categorized either as general chat or messages that involve

questions or answers about the quests the NPC is providing.
 At the top level there is an I/O interface that manages

data transfer between the NPC, virtual world server, HTTP
servers and also the disk. Figure 8 shows the different NPC
components.

B. Implementation Discussion

The PNQ NPC client is implemented as part of the CVE

project. The source code for the PNQ NPC client is available

at cve.sourceforge.net. CVE is written in Unicon, a very high

level object-oriented and goal-directed programming

language [13, 14]. The NPC client is independent from the

regular user client in CVE and could be implemented using

any programming language. However, Unicon was chosen to

implement the NPC client because it provides:

1) a very simple interface to the standard internet

protocols such as TCP and HTTP [13].

2) high level built-in string parsing features that make

it easy to parse the NPC profile and quest data.
The NPC client starts by downloading the NPC home

page and quest pages that define the profile of the NPC. It
then initiates a TCP connection with the virtual world server.
Upon a successful login, the new NPC is available in the
virtual world accepting interactions from other users.

C. Network Protocol

The PNQ NPC network protocol uses string messages
consisting of a command name followed by arguments. The
NPC client recognizes the following messages coming from
the virtual world server and other users: chat messages,
messages about other users’ locations in the virtual world,
and messages about quest requests and activities. All
commands must begin with two forward slashes (//). Some
commands have arguments to pass information to/from the
NPC. This protocol is for the CVE and not used for Second
Life, which has its own protocol, except that NPC's in
Second Life report quest completion to the CVE server using
this protocol. A summary of the commands are listed below.

Figure 6. A sample CVE quest invitation dialog.

A byte is a sequence of 8 bits. There are 256
possible combinations of bits in a byte. A byte may
store: eight separate true/false values; a number
from 0 to 255 or -128 to 127; or, commonly, a single
character symbol encoded using some character set,
such as ASCII, the American Standard Code for
Information Interchange.

Figure 7. Quest activities in Second Life. The user has submitted

a “hello world” Java quest. The NPC informs the user

that there is an error in the program.

Figure 9. PNQ NPC quest messages get transferred between the

NPC, server and the client to start new quests.

User presence commands:
users -brings up a list of all the other users who are

currently online.
avatar -informs about a new user who just logged in.
move -informs about a specific user movement (x,y,z and

direction).
Chat commands:
say -public chat message sent to all users.
tell -private chat message sent to the intended user only.

Quest activities commands:
Npcmsg -this command communicates information about

quest activities between the NPC, server and clients.
This command takes several arguments containing all
of the information necessary for each quest activity.
The following is a short summary of these arguments.
Some arguments have extra information (quest
title/score) omitted below for simplicity:

Quest LookFor: Asks the NPC if he has available quests.
Quest Halo: Informs the client that the NPC has
available quests.
Quest GiveMe: Asks the NPC to send the next available
quest.
Quest URL: Sends the client a quest URL.
Quest Accept: Informs the NPC that the user has
accepted the quest.
Quest Cancel: Informs the NPC that the user has
cancelled or abandoned the quest.
Quest Done: Informs the NPC that the user has finished
the quest.

Figure 9 shows a scenario where the quest messages are
used to start a new quest. The process starts when a user
client clicks the red ball marking a quest over an NPC. The
click sends the message “Quest GiveMe” to the server and
then it gets forwarded to the specific NPC. The NPC finds
the next available quest for that user based on the knowledge
it has, then sends back a quest title along with its URL. The
server gets the message and checks whether the user has
already completed the quest or is currently undertaking the
quest. Of course this is not typical because the NPC
maintains a list of completed and active quests for every
user, but if the NPC process gets restarted, the quest protocol
allows it to reload user dynamic knowledge on demand. The
scenario in Figure 9 shows the case when the NPC needs to
get updated. After a quest request message, the server replies
to the NPC informing it that this user has completed the
quest. The NPC then adds this piece of information to its
database and finds another available quest for the user and
sends it back to the server, which in turn checks again
whether the user has already completed the quest. This time
the server approves the new quest and forwards it to the
client. The client gets the message and downloads the quest
from the specified URL or loads it from the disk if it is
stored on the local disk. If the user accepts the new quest,
which is the case in the scenario we have here, it sends the
message “Quest Accept Title(T)” back to the server. The
server adds the specified quest to the active quest list for the
user and forwards the message to the NPC which in turn also
adds the quest to the active quests list for that user. In some
virtual worlds, where the server cannot be involved in quest

activities, the NPC relies on its knowledge to determine if
the user qualifies to take a specific quest. In this case, if the
NPC has to be moved to a new machine, all of its knowledge
has to be moved along with it.

D. Source Code Organization

At the top level view, the NPC source code is organized
into two major components: the NPC class and the client
application that uses it. The NPC class, called ExternalNPC,
features a public interface consisting of login() and mainloop()
methods and a few other methods that control the NPC

Figure 8. PNQ NPC Architecture.

PNQ NPC

I/O Interface

Platform-Independent

NPC Profile and

Quests data

Platform-dependent

Dynamic state/Chat/

Quests Activities

Virtual

World Server
HTTP

servers

Disk

B
eh

a
v

io
r

Dialog/

Chat

General

Chat

Quests

related

Chat

Knowledge

Relatively

Static

Quest

database

Dynamic

Users’

Information and

their quest

activities

activities. The NPC class also holds most of the common
features shared between different kinds of NPCs such as
quest activities and basic chat capabilities. NPC client
applications can customize the NPCs and give them
distinguishing characteristics beyond what is modeled in the
profile web page to any more advanced dialogue capabilities
and behavior that are required for that specific NPC.

Given the ExternalNPC class, what does the Tux NPC
client look like? Tux has a profile on a web home page.
Figure 10 shows a minimal Tux NPC client to instantiate
Tux in the CVE virtual world. Tux’s profile is downloaded
from the specified homepage. The methods handle_msg() and
idlefunc() are called to handle the received messages from the
server and to set what to do when Tux is idle. Although Tux
is not doing anything except standing in a fixed position and
logging whatever messages he gets from the server without
responding to any of them, this is a building block for an
NPC client that may form the basis for interesting NPC
dialogue, knowledge, and behavior models.

The source code for the NPC client itself is organized
into several classes. The following is a list of the major
classes along with a summary about each class:

ExternalNPC: Holds all the information about the NPC. It
has methods for downloading and parsing the NPC profile,
managing the connection with the CVE server, receiving
server messages and giving proper responses and taking
proper actions when asked to chat or to give quest activities.

AvatarData: Holds the NPC’s knowledge of other users’
avatars and their quests activities. The NPC uses this to be
aware of other users’ locations and take proper actions if
any. Some NPCs for example might interact with other users
if they come closer or go farther, and also avoid them if the
NPC is set to move. The NPC uses this also to know what
quests each specific user has already completed, quests that
they can take and quests that they are currently working on.

Knowledge: A collection of knowledge categories.

KnowledgeCategory: A collection of quests that belongs to
the same category such as Linux quest.

Quest: Holds all of the information about a quest, such as
readings, prerequisites, and steps. It has methods to read and
parse a quest from a webpage or a local file and save it if
necessary to a local file. The Quest class also keeps track of
the quest activities like the current question the user is
answering, quest score, and user’s answers for different
questions and so on.

VI. MULTI-PLATFORM ARCHITECTURE ISSUES

The most interesting design consideration for NPCs in
educational virtual environments is: how much of the NPC
appearance or behavior is coded inside the virtual
environment using its normal programming APIs and
scripting mechanisms. Flexibility is gained by coding
externally via a separate program that communicates with
the virtual environment. In this project, it was expected that
NPCs would be coded largely using the virtual
environment’s normal programming APIs. Portability needs
overrode this intuition. The more logic that can be coded
outside the virtual world, in the PNQ NPC client process, the
more of that logic can be shared across virtual worlds.

A. Second Life NPCs

The objective of the PNQ experiment in Second Life was
to replicate the local Computer Science environment at the
University of Idaho (UI) and provide NPCs and quest
activities for that environment.

The PNQ’s Second Life implementation borrows ideas
from [2, 3], namely the AIML and the use of a user avatar
rather than constructing a crude avatar from virtual objects.
As is the likely case for many other Second Life NPC
projects, Second Life affords low construction costs, but
maintenance costs paid to Linden Labs can be substantial. In
UI's case, a campus-wide island is owned but controlled
elsewhere and incurs unacceptable monthly costs, so for this
experiment a separate plot was purchased. Land sufficient to
represent the UI's Janssen Engineering Building cost US$60,
with a monthly fee of US$18. This meets the low-cost
requirement. Students built a virtual UI CS department, with
unsatisfactory results. The students constructed a facade with
a few floors but were unable to build a useful interior given
the 347 graphics primitives that Linden allowed on the plot.

Second Life offers no domain support. An NPC that
requires specific domain tools such as a Java compiler, as
shown in Figure 7, must use external tools. In the example
shown in Figure 7, the student’s homework (computer
programs) was uploaded by clicking a virtual object and
specifying a file. The file was transmitted to an external
server where it was evaluated by compiling, running, and
comparing it against expected results.

Second Life non-player characters were implemented by
a C# program using libsecondlife, which has been renamed
to libopenmetaverse (openmetaverse.org), to login to a
regular user account. Scripted virtual clothing enabled the
NPC to be informed when a user clicked on it; in other
respects the PNQ Second Life NPCs interacted with the user
primarily via chat commands.

class ClientNPC:ExternalNPC()

method handle_msg(s)

 write("tux received ", s)

end

method idlefunc()

 write("tux is snoozing")

 delay(1000)

end

method run(password)

 srvport := "virtual.cs.uidaho.edu:4500"

 homepage := "www.tux_homepage.com"

 login(password)

 mainloop()

 write("NPC loop finished, good bye")

end

procedure main(arg)

 tux := ClientNPC()

 tux.run(arg[1]) # passing the password

end

Figure 10. A very simple and compact NPC client example.

B. NPCs in the CVE Environment

The CVE virtual environment is primitive compared with
Second Life, but its simplicity allows easy experimentation.
CVE avatars can be created from 3D models produced by
tools such as 3D Studio Max and exported in Microsoft .x
format. Figure 1 shows some example avatar models in the
CVE environment a long with quest activities. The dog NPC
is loaded from a .x file. The other avatar is hardwired model.

Compared with Second Life, CVE features an integrated
collaborative IDE that allows tutorial activities for a range of
computing topics. Besides shell commands illustrated in the
ls example earlier, these include editing, compilation,
execution, debugging, and testing activities for C, C++, Java,
and Unicon. Different NPCs teach different subjects and
have different personalities embodied in their AIML scripts.
In order to offer these CVE-native tutorial activities in
Second Life, the NPC agents in Second Life must provide
the required interactive demonstration facilities themselves
via chat, or accept file submissions of captured sessions
conducted outside the virtual world.

VII. CONCLUSIONS

This paper introduces PNQ, a notation for portable NPC
tutors and quest activities built on top of multi-platform non-
player character architecture. PNQ provides a quest system
for the purpose of encoding educational content. The
architecture provides rudimentary NPCs that offer
educational quest activities to users across virtual worlds.
Creating a new NPC consists of writing a new web profile
for that NPC. Creating new quests follows the same
approach, enabling the virtual world to be populated with
NPCs and educational content by regular users. Some of the
quests that are the most fun no doubt will involve
interactions that are specific to a particular virtual
environment. However, judging from World of Warcraft’s
quest mix, a large percentage of quests can be world-
independent. For tutorial NPCs they will likely be domain-
dependent for a learning domain which may or may not have
a virtual world embodiment. Without such direct virtual
world embodiment of the material being taught, the success
of tutoring is defined mainly by the NPC’s ability to convey
the material via its scripts.

In a preliminary evaluation of PNQ NPC tutors and their
educational quests, part of a short survey at the end of a
virtual summer camp held in summer 2009 asked users to
evaluate their experience in virtual worlds. A few questions
specifically targeted users’ experience with NPC tutors.
Based on users' experience, walking around in a virtual
world looking for NPCs and asking for quests, which often
finish with a set of questions to answer, is more enjoyable
than answering web-based questions. Users also indicated
that NPC quest activities motivate them to look for more
quests to do. The users show a great interest in interacting
with NPCs to get their quests, preferring this method over
getting the same quests through a menu. Users think that
NPCs are an important part of any virtual world as long as
the NPC can do something, such as offer quests and/or

interesting chat. Otherwise NPCs are no more than
decorations.

Given the capability to create interesting NPCs that live
in multiple worlds, significant challenges remain, such as
rewards that provide increased character capabilities that
function across multiple worlds. Since most users will
interact with NPCs through a single virtual world interface,
the primary function of these tutorial NPCs is to enable
content to be used in multiple environments.

ACKNOWLEDGMENTS

Brandon Nutter provided the C# portion of the NPQ
NPC's for Second Life. The research was supported in part
by NSF ATE grant number 0405072.

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide, Addison-Wesley, 1998.

[2] A. Fossett, PandoraBot NPC.

 http://artfossett.blogspot.com/2007/07/pandorabot-npc.html.

[3] D. Friedman, A. Steed, and M. Slater. Spatial Social Behavior in
Second Life, Proc. Intelligent Virtual Agents LNAI 4722, pp. 252-
363, Paris France, September 2007.

[4] R. Wallace, ed., Artificial Intelligence Markup Language (AIML)
Version 1.0.1. Working draft obtained from
http://www.alicebot.org/TR/2001/WD-aiml/

[5] S. Redfern, and N. Naughton. Collaborative Virtual Environments to
Support Communication and Community in Internet-Based Distance
Education. Journal of Information Technology Education, volume 1
No. 3, 2002.

[6] K. Merrick, and M.-L. Maher. Motivated Reinforcement Learning for
Non-player Characters in Persistent Computer Game worlds, Proc.
ACM International Conference on Advances in Computer
Entertainment Technology. 2006

[7] K. Merrick, and M.-L. Maher. Motivated reinforcement learning for
adaptive characters in open-ended simulation games. Proc. ACM
International Conference on Advances in Computer Entertainment
Technology 203, pp. 127-134, 2007.

[8] C. McCollum, C. Barba, and T. Santarelli. Applying a Cognitive
Architecture to Control of Virtual Non-Player Characters. Proc. The
2004 Winter Simulation Conference.

[9] M. Mateas, A. Stern. A Behavior Language for Story-Based
Believable Agents. IEEE Intelligent Systems, volume 17, issue 4, pp.
39 – 47, July 2002.

[10] H. Tuzun. Quest Atlantis: A Computer Game That Transcends the
Computer.

http://www.e-mentor.edu.pl/_xml/wydania/5/64.pdf

[11] S. Barab, M. Thomas, T. Dodge, R. Carteaux, H. Tuzun. Making
Learning Fun: Quest Atlantis, A Game Without Guns. Educational
Technology Research and Development, volume 53, No. 1, pp. 86-
107, 2005.

[12] K.-S. Yoo, and W.-H. Lee. An Intelligent Non Player Character
Based on BDI Agent. Proc. Fourth International Conference on
Networked Computing and Advanced Information Management
NCM '08, pp. 214-219. 2008.

[13] Jeffery, C., Mohamed, S., Parlett, R., Pereda, R.: Unicon book
“Programming with Unicon". (1999-2003),. Available at
http://unicon.org/book/ub.pdf.

[14] Jeffery, C., Jeffery, S.: An IVIB Primer. (February 21, 2006), Unicon
Technical Report #6b.
http://www.cs.nmsu.edu/~jeffery/unicon/utr/utr6b.pdf.

http://unicon.org/book/ub.pdf
http://www.cs.nmsu.edu/~jeffery/unicon/utr/utr6b.pdf

